103 research outputs found
Influence of renin-angiotensin-aldosterone system inhibitors on plasma levels of angiotensin-converting enzyme 2
Concern has been raised that treatment with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the expression of angiotensin-converting enzyme 2 (ACE2), which acts as the entry receptor for SARS-CoV-2, and lead to an increased risk of death from SARS-CoV-2. We aimed to address this concern by evaluating the in vivo relationship of treatment with ACE inhibitors and angiotensin receptor blockers (ARB) with circulating plasma concentrations of ACE2 in a large cohort of patients with established cardiovascular disease (n = 1864) or cardiovascular risk factors (n = 2144) but without a history of heart failure.; Angiotensin-converting enzyme 2 was measured in 4008 patients (median age 68, 33% women, 31% on ACE-inhibitors, 31% on ARB) using the SOMAscan proteomic platform (SomaLogic Inc, Colorado, USA). Plasma concentration of ACE2 was comparable in 1250 patients on ACE inhibitors (mean 5.99) versus patients without ACE inhibitors (mean 5.98, P = 0.54). Similarly, plasma concentration of ACE2 was comparable in 1260 patients on ARB (mean 5.99) versus patients without ARB (mean 5.98, P = 0.50). Plasma concentration of ACE2 was comparable in 2474 patients on either ACE inhibitors or ARB (mean 5.99) versus patients without ACE inhibitors or ARB (mean 5.98, P = 0.31). Multivariable quantile regression model analysis confirmed the lack of association between treatment with ACE inhibitors or ARB and ACE2 concentrations. Body mass index showed the only positive association with ACE2 plasma concentration (effect 0.015, 95% confidence interval 0.002 to 0.028, P = 0.024).; In a large cohort of patients with established cardiovascular disease or cardiovascular risk factors but without heart failure, ACE inhibitors and ARB were not associated with higher plasma concentrations of ACE2
Prohormones in the early diagnosis of cardiac syncope
Background--The early detection of cardiac syncope is challenging. We aimed to evaluate the diagnostic value of 4 novel prohormones, quantifying different neurohumoral pathways, possibly involved in the pathophysiological features of cardiac syncope: midregional-pro-A-type natriuretic peptide (MRproANP), C-terminal proendothelin 1, copeptin, and midregionalproadrenomedullin. Methods and Results--We prospectively enrolled unselected patients presenting with syncope to the emergency department (ED) in a diagnostic multicenter study. ED probability of cardiac syncope was quantified by the treating ED physician using a visual analogue scale. Prohormones were measured in a blinded manner. Two independent cardiologists adjudicated the final diagnosis on the basis of all clinical information, including 1-year follow-up. Among 689 patients, cardiac syncope was the adjudicated final diagnosis in 125 (18%). Plasma concentrations of MRproANP, C-terminal proendothelin 1, copeptin, and midregional-proadrenomedullin were all significantly higher in patients with cardiac syncope compared with patients with other causes (P < 0.001). The diagnostic accuracies for cardiac syncope, as quantified by the area under the curve, were 0.80 (95% confidence interval [CI], 0.76-0.84), 0.69 (95% CI, 0.64-0.74), 0.58 (95% CI, 0.52-0.63), and 0.68 (95% CI, 0.63-0.73), respectively. In conjunction with the ED probability (0.86; 95% CI, 0.82-0.90), MRproANP, but not the other prohormone, improved the area under the curve to 0.90 (95% CI, 0.87-0.93), which was significantly higher than for the ED probability alone (P=0.003). An algorithm to rule out cardiac syncope combining an MRproANP level of < 77 pmol/L and an ED probability of < 20% had a sensitivity and a negative predictive value of 99%. Conclusions--The use of MRproANP significantly improves the early detection of cardiac syncope among unselected patients presenting to the ED with syncope
Gut microbiota-dependent metabolite trimethylamine N-oxide (TMAO) and cardiovascular risk in patients with suspected functionally relevant coronary artery disease (fCAD)
Trimethylamine N-oxide (TMAO) has been associated with cardiovascular outcomes. However, the diagnostic value of TMAO and its precursors have not been assessed for functionally relevant coronary artery disease (fCAD) and its prognostic potential in this setting needs to be evaluated.; Among 1726 patients with suspected fCAD serum TMAO, and its precursors betaine, choline and carnitine, were quantified using liquid chromatography tandem mass spectrometry. Diagnosis of fCAD was performed by myocardial perfusion single photon emission tomography (MPI-SPECT) and coronary angiography blinded to marker concentrations. Incident all-cause death, cardiovascular death (CVD) and myocardial infarction (MI) were assessed during 5-years follow-up.; Concentrations of TMAO, betaine, choline and carnitine were significantly higher in patients with fCAD versus those without (TMAO 5.33 μM vs 4.66 μM, p < 0.001); however, diagnostic accuracy was low (TMAO area under the receiver operating curve [AUC]: 0.56, 95% CI [0.53-0.59], p < 0.001). In prognostic analyses, TMAO, choline and carnitine above the median were associated with significantly (p < 0.001 for all) higher cumulative events for death and CVD during 5-years follow-up. TMAO remained a significant predictor for death and CVD even in full models adjusted for renal function (HR = 1.58 (1.16, 2.14), p = 0.003; HR = 1.66 [1.07, 2.59], p = 0.025). Prognostic discriminative accuracy for TMAO was good and robust for death and CVD (2-years AUC for CVD 0.73, 95% CI [0.65-0.80]).; TMAO and its precursors, betaine, choline and carnitine were significantly associated with fCAD, but with limited diagnostic value. TMAO was a strong predictor for incident death and CVD in patients with suspected fCAD.; NCT01838148
Clinical effect of obesity on N-terminal pro-B-type natriuretic peptide cut-off concentrations for the diagnosis of acute heart failure
AIMS
Obese patients have lower natriuretic peptide concentrations. We hypothesized that adjusting the concentration of N-terminal pro-B-type natriuretic peptide (NT-proBNP) for obesity could further increase its clinical utility in the early diagnosis of acute heart failure (AHF).
METHODS AND RESULTS
This hypothesis was tested in a prospective diagnostic study enrolling unselected patients presenting to the emergency department with acute dyspnoea. Two independent cardiologists/internists centrally adjudicated the final diagnosis using all individual patient information including cardiac imaging. NT-proBNP plasma concentrations were applied: first, using currently recommended cut-offs; second, using cut-offs lowered by 33% with body mass index (BMI) of 30-34.9 kg/m and by 50% with BMI ≥ 35 kg/m . Among 2038 patients, 509 (25%) were obese, of which 271 (53%) had AHF. The diagnostic accuracy of NT-proBNP as quantified by the area under the receiver-operating characteristic curve was lower in obese versus non-obese patients (0.890 vs. 0.938). For rapid AHF rule-out in obese patients, the currently recommended cut-off of 300 pg/ml achieved a sensitivity of 96.7% (95% confidence interval [CI] 93.8-98.2%), ruling out 29% of patients and missing 9 AHF patients. For rapid AHF rule-in, the age-dependent cut-off concentrations (age 75 years: 1800 pg/ml) achieved a specificity of 84.9% (95% CI 79.8-88.9%). Proportionally lowering the currently recommended cut-offs by BMI increased sensitivity to 98.2% (95% CI 95.8-99.2%), missing 5 AHF patients; reduced the proportion of AHF patients remaining in the 'gray zone' (48% vs. 26%; p = 0.002), achieving a specificity of 76.5% (95% CI 70.7-81.4%).
CONCLUSIONS
Adjusting NT-proBNP concentrations for obesity seems to further increase its clinical utility in the early diagnosis of AHF
Cardiac myosin-binding protein C in the diagnosis and risk stratification of acute heart failure
Cardiac myosin-binding protein C (cMyC) seems to be even more sensitive in the quantification of cardiomyocyte injury vs. high-sensitivity cardiac troponin, and may therefore have diagnostic and prognostic utility.; In a prospective multicentre diagnostic study, cMyC, high-sensitivity cardiac troponin T (hs-cTnT), and N-terminal pro-B-type natriuretic peptide (NT-proBNP) plasma concentrations were measured in blinded fashion in patients presenting to the emergency department with acute dyspnoea. Two independent cardiologists centrally adjudicated the final diagnosis. Diagnostic accuracy for acute heart failure (AHF) was quantified by the area under the receiver operating characteristic curve (AUC). All-cause mortality within 360 days was the prognostic endpoint. Among 1083 patients eligible for diagnostic analysis, 51% had AHF. cMyC concentrations at presentation were higher among AHF patients vs. patients with other final diagnoses [72 (interquartile range, IQR 39-156) vs. 22 ng/L (IQR 12-42), P < 0.001)]. cMyC's AUC was high [0.81, 95% confidence interval (CI) 0.78-0.83], higher than hs-cTnT's (0.79, 95% CI 0.76-0.82, P = 0.081) and lower than NT-proBNP's (0.91, 95% CI 0.89-0.93, P < 0.001). Among 794 AHF patients eligible for prognostic analysis, 28% died within 360 days; cMyC plasma concentrations above the median indicated increased risk of death (hazard ratio 2.19, 95% CI 1.66-2.89; P < 0.001). cMyC's prognostic accuracy was comparable with NT-proBNP's and hs-cTnT's. cMyC did not independently predict all-cause mortality when used in validated multivariable regression models. In novel multivariable regression models including medication, age, left ventricular ejection fraction, and discharge creatinine, cMyC remained an independent predictor of death and had no interactions with medical therapies at discharge.; Cardiac myosin-binding protein C may aid physicians in the rapid triage of patients with suspected AHF
A 0/1h-algorithm using cardiac myosin-binding protein C for early diagnosis of myocardial infarction.
AIMS
Cardiac myosin-binding protein C (cMyC) demonstrated high diagnostic accuracy for the early detection of non-ST-elevation myocardial infarction (NSTEMI). Its dynamic release kinetics may enable a 0/1h-decision algorithm that is even more effective than the ESC hs-cTnT/I 0/1 h rule-in/rule-out algorithm.
METHODS AND RESULTS
In a prospective international diagnostic study enrolling patients presenting with suspected NSTEMI to the emergency department, cMyC was measured at presentation and after 1 h in a blinded fashion. Modelled on the ESC hs-cTnT/I 0/1h-algorithms, we derived a 0/1h-cMyC-algorithm. Final diagnosis of NSTEMI was centrally adjudicated according to the 4th Universal Definition of Myocardial Infarction. Among 1495 patients, the prevalence of NSTEMI was 17%. The optimal derived 0/1h-algorithm ruled-out NSTEMI with cMyC 0 h concentration below 10 ng/L (irrespective of chest pain onset) or 0 h cMyC concentrations below 18 ng/L and 0/1 h increase <4 ng/L. Rule-in occurred with 0 h cMyC concentrations of at least 140 ng/L or 0/1 h increase ≥15 ng/L. In the validation cohort (n = 663), the 0/1h-cMyC-algorithm classified 347 patients (52.3%) as 'rule-out', 122 (18.4%) as 'rule-in', and 194 (29.3%) as 'observe'. Negative predictive value for NSTEMI was 99.6% [95% confidence interval (CI) 98.9-100%]; positive predictive value 71.1% (95% CI 63.1-79%). Direct comparison with the ESC hs-cTnT/I 0/1h-algorithms demonstrated comparable safety and even higher triage efficacy using the 0h-sample alone (48.1% vs. 21.2% for ESC hs-cTnT-0/1 h and 29.9% for ESC hs-cTnI-0/1 h; P < 0.001).
CONCLUSION
The cMyC 0/1h-algorithm provided excellent safety and identified a greater proportion of patients suitable for direct rule-out or rule-in based on a single measurement than the ESC 0/1h-algorithm using hs-cTnT/I.
TRIAL REGISTRATION
ClinicalTrials.gov number, NCT00470587
External Validation and Extension of a Clinical Score for the Discrimination of Type 2 Myocardial Infarction
Background: The early non-invasive discrimination of Type 2 versus Type 1 Myocardial Infarction (T2MI, T1MI) is a major unmet clinical need. We aimed to externally validate a recently derived clinical score (Neumann) combing female sex, no radiating chest pain, and high-sensitivity cardiac troponin I (hs-cTnI) concentration ≤40.8 ng/L. Methods: Patients presenting with acute chest discomfort to the emergency department were prospectively enrolled into an international multicenter diagnostic study. The final diagnoses of T2MI and T1MI were centrally adjudicated by two independent cardiologists using all information including cardiac imaging and serial measurements of hs-cTnT/I according to the fourth universal definition of MI. Model performance for T2MI diagnosis was assessed by formal tests and graphical means of discrimination and calibration. Results: Among 6684 enrolled patients, MI was the adjudicated final diagnosis in 1079 (19%) patients, of which 242 (22%) had T2MI. External validation of the Neumann Score showed a moderate discrimination (C-statistic 0.67 (95%CI 0.64–0.71)). Model calibration showed underestimation of the predicted probabilities of having T2MI for low point scores. Model extension by adding the binary variable heart rate >120/min significantly improved model performance (C-statistic 0.73 (95% CI 0.70–0.76, p 120/min improved the model’s performance
- …