76 research outputs found

    The PRECISE (PREgnancy Care Integrating translational Science, Everywhere) database: open-access data collection in maternal and newborn health

    Get PDF
    In less-resourced settings, adverse pregnancy outcome rates are unacceptably high. To effect improvement, we need accurate epidemiological data about rates of death and morbidity, as well as social determinants of health and processes of care, and from each country (or region) to contextualise strategies. The PRECISE database is a unique core infrastructure of a generic, unified data collection platform. It is built on previous work in data harmonisation, outcome and data field standardisation, open-access software (District Health Information System 2 and the Baobab Laboratory Information Management System), and clinical research networks. The database contains globally-recommended indicators included in Health Management Information System recording and reporting forms. It comprises key outcomes (maternal and perinatal death), life-saving interventions (Human Immunodeficiency Virus testing, blood pressure measurement, iron therapy, uterotonic use after delivery, postpartum maternal assessment within 48 h of birth, and newborn resuscitation, immediate skin-to-skin contact, and immediate drying), and an additional 17 core administrative variables for the mother and babies. In addition, the database has a suite of additional modules for ‘deep phenotyping’ based on established tools. These include social determinants of health (including socioeconomic status, nutrition and the environment), maternal comorbidities, mental health, violence against women and health systems. The database has the potential to enable future high-quality epidemiological research integrated with clinical care and discovery bioscience

    Methods for delivering the UK's multi-centre prison-based naloxone-on-release pilot randomised trial (N-ALIVE): Europe's largest prison-based randomised controlled trial.

    Get PDF
    INTRODUCTION AND AIMS: Naloxone is an opioid antagonist used for emergency resuscitation following opioid overdose. Prisoners with a history of heroin use by injection have a high risk of drug-related death in the first weeks after prison-release. The N-ALIVE trial was planned as a large prison-based randomised controlled trial (RCT) to test the effectiveness of naloxone-on-release in the prevention of fatal opiate overdoses soon after release. The N-ALIVE pilot trial was conducted to test the main trial's assumptions on recruitment of prisons and prisoners, and the logistics for ensuring that participants received their N-ALIVE pack on release. DESIGN AND METHODS: Adult prisoners who had ever injected heroin, were incarcerated for ≥7 days and were expected to be released within 3 months were eligible. Participants were randomised to receive, on liberation, a pack containing a single 'rescue' injection of naloxone or a control pack with no naloxone syringe. The trial was double-blind prior to prison-release. RESULTS: We randomised 1685 prisoners (842 naloxone; 843 control) across 16 prisons in England. We stopped randomisation on 8 December 2014 because only one-third of administrations of naloxone-on-release were to the randomised ex-prisoner; two-thirds were to others whom we were not tracing. DISCUSSION AND CONCLUSIONS: Prevention RCTs are seldom conducted within prisons; we demonstrated the feasibility of conducting a multi-prison RCT to prevent fatality from opioid overdose in the outside community. We terminated the N-ALIVE trial due to the infeasibility of individualised randomisation to naloxone-on-release. Large RCTs are feasible within prisons.The pilot N-ALIVE Trial was grant-funded by the Medical Research Council (MC_G0800012) and co- ordinated by the MRC Clinical Trials Unit at Univer- sity College London, which core-funds MKBP, LC and AMM. SMB was funded by Medical Research Council program number MC_U10526079

    Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth

    Get PDF
    Immediately after birth, newborn babies experience rapid colonization by microorganisms from their mothers and the surrounding environment1. Diseases in childhood and later in life are potentially mediated by the perturbation of the colonization of the infant gut microbiota2. However, the effects of delivery via caesarean section on the earliest stages of the acquisition and development of the gut microbiota, during the neonatal period (≤1 month), remain controversial3,4. Here we report the disrupted transmission of maternal Bacteroides strains, and high-level colonization by opportunistic pathogens associated with the hospital environment (including Enterococcus, Enterobacter and Klebsiella species), in babies delivered by caesarean section. These effects were also seen, to a lesser extent, in vaginally delivered babies whose mothers underwent antibiotic prophylaxis and in babies who were not breastfed during the neonatal period. We applied longitudinal sampling and whole-genome shotgun metagenomic analysis to 1,679 gut microbiota samples (taken at several time points during the neonatal period, and in infancy) from 596 full-term babies born in UK hospitals; for a subset of these babies, we collected additional matched samples from mothers (175 mothers paired with 178 babies). This analysis demonstrates that the mode of delivery is a significant factor that affects the composition of the gut microbiota throughout the neonatal period, and into infancy. Matched large-scale culturing and whole-genome sequencing of over 800 bacterial strains from these babies identified virulence factors and clinically relevant antimicrobial resistance in opportunistic pathogens that may predispose individuals to opportunistic infections. Our findings highlight the critical role of the local environment in establishing the gut microbiota in very early life, and identify colonization with antimicrobial-resistance-containing opportunistic pathogens as a previously underappreciated risk factor in hospital births

    nSeP: immune and metabolic biomarkers for early detection of neonatal sepsis-protocol for a prospective multicohort study

    Get PDF
    Introduction Diagnosing neonatal sepsis is heavily dependent on clinical phenotyping as culture-positive body fluid has poor sensitivity, and existing blood biomarkers have poor specificity. A combination of machine learning, statistical and deep pathway biology analyses led to the identification of a tripartite panel of biologically connected immune and metabolic markers that showed greater than 99% accuracy for detecting bacterial infection with 100% sensitivity. The cohort study described here is designed as a large-scale clinical validation of this previous work. Methods and analysis This multicentre observational study will prospectively recruit a total of 1445 newborn infants (all gestations)—1084 with suspected early—or late-onset sepsis, and 361 controls—over 4 years. A small volume of whole blood will be collected from infants with suspected sepsis at the time of presentation. This sample will be used for integrated transcriptomic, lipidomic and targeted proteomics profiling. In addition, a subset of samples will be subjected to cellular phenotype and proteomic analyses. A second sample from the same patient will be collected at 24 hours, with an opportunistic sampling for stool culture. For control infants, only one set of blood and stool sample will be collected to coincide with clinical blood sampling. Along with detailed clinical information, blood and stool samples will be analysed and the information will be used to identify and validate the efficacy of immune-metabolic networks in the diagnosis of bacterial neonatal sepsis and to identify new host biomarkers for viral sepsis

    mSep: investigating physiological and immune-metabolic biomarkers in septic and healthy pregnant women to predict feto-maternal immune health – a prospective observational cohort study protocol

    Get PDF
    Introduction: Maternal sepsis remains a leading cause of death in pregnancy. Physiological adaptations to pregnancy obscure early signs of sepsis and can result in delays in recognition and treatment. Identifying biomarkers that can reliably diagnose sepsis will reduce morbidity and mortality and antibiotic overuse. We have previously identified an immune-metabolic biomarker network comprising three pathways with a >99% accuracy for detecting bacterial neonatal sepsis. In this prospective study, we will describe physiological parameters and novel biomarkers in two cohorts—healthy pregnant women and pregnant women with suspected sepsis—with the aim of mapping pathophysiological drivers and evaluating predictive biomarkers for diagnosing maternal sepsis. Methods and analysis: Women aged over 18 with an ultrasound-confirmed pregnancy will be recruited to a pilot and two main study cohorts. The pilot will involve blood sample collection from 30 pregnant women undergoing an elective caesarean section. Cohort A will follow 100 healthy pregnant women throughout their pregnancy journey, with collection of blood samples from participants at routine time points in their pregnancy: week 12 ‘booking’, week 28 and during labour. Cohort B will follow 100 pregnant women who present with suspected sepsis in pregnancy or labour and will have at least two blood samples taken during their care pathway. Study blood samples will be collected during routine clinical blood sampling. Detailed medical history and physiological parameters at the time of blood sampling will be recorded, along with the results of routine biochemical tests, including C reactive protein, lactate and white blood cell count. In addition, study blood samples will be processed and analysed for transcriptomic, lipidomic and metabolomic analyses and both qualitative and functional immunophenotyping. Ethics and dissemination: Ethical approval has been obtained from the Wales Research Ethics Committee 2 (SPON1752-19, 30 October 2019). Trial registration number: NCT05023954

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Gathering the Voices: Evelyn Strang

    Get PDF
    The aim of this project is to gather, contextualise and digitise oral testimony from men and women who sought sanctuary in Scotland to escape the racism of Nazi-dominated Europe
    corecore