347 research outputs found

    Optical refrigeration with coupled quantum wells

    Get PDF
    Refrigeration of a solid-state system with light has potential applications for cooling small-scale electronics and photonics. We show theoretically that two coupled semiconductor quantum wells are efficient cooling media for optical refrigeration because they support long-lived indirect electron-hole pairs. Thermal excitation of these pairs to distinct higher-energy states with faster radiative recombination allows an efficient escape channel to remove thermal energy from the system. This allows reaching much higher cooling efficiencies than with single quantum wells. From band-diagram calculations along with an experimentally realistic level scheme we calculate the cooling efficiency and cooling yield of different devices with coupled quantum wells embedded in a suspended nanomembrane. The dimension and composition of the quantum wells allow optimizing either of these quantities, which cannot, however, be maximized simultaneously. Quantum-well structures with electrical control allow tunability of carrier lifetimes and energy levels so that the cooling efficiency can be optimized over time as the thermal population decreases due to the cooling.Comment: 10 pages, 5 figure

    Measuring the effective phonon density of states of a quantum dot

    Get PDF
    We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from longitudinal acoustic phonons, and identifies the reason for the hitherto unexplained difference between non-resonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot. This quantity determines all phonon dephasing properties of the system and is found to be described well by a theory of bulk phonons.Comment: 5 pages, 3 figures, submitte

    Large quantum dots with small oscillator strength

    Full text link
    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size and predict a very large oscillator strength due to Coulomb effects. This is in stark contrast to the measured oscillator strength, which turns out to be much below the upper limit imposed by the strong confinement model. We attribute these findings to exciton localization in local potential minima arising from alloy intermixing inside the quantum dots.Comment: 4 pages, 3 figures, submitte

    Nonuniversal intensity correlations in 2D Anderson localizing random medium

    Full text link
    Complex dielectric media often appear opaque because light traveling through them is scattered multiple times. Although the light scattering is a random process, different paths through the medium can be correlated encoding information about the medium. Here, we present spectroscopic measurements of nonuniversal intensity correlations that emerge when embedding quantum emitters inside a disordered photonic crystal that is found to Anderson-localize light. The emitters probe in-situ the microscopic details of the medium, and imprint such near-field properties onto the far-field correlations. Our findings provide new ways of enhancing light-matter interaction for quantum electrodynamics and energy harvesting, and may find applications in subwavelength diffuse-wave spectroscopy for biophotonics

    Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    Get PDF
    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots' spontaneous emission rates as the two-dimensional bandgap is tuned through their emission frequencies. The measured band edges are in full agreement with theoretical predictions. We characterize the multi-exponential decay curves by their mean decay time and find enhancement of the spontaneous emission at the bandgap edges and strong inhibition inside the bandgap in good agreement with local density of states calculations.Comment: 9 pages (preprint), 3 figure

    Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane

    Full text link
    Optical cavity cooling of mechanical resonators has recently become a research frontier. The cooling has been realized with a metal-coated silicon microlever via photo-thermal force and subsequently with dielectric objects via radiation pressure. Here we report cavity cooling with a crystalline semiconductor membrane via a new mechanism, in which the cooling force arises from the interaction between the photo-induced electron-hole pairs and the mechanical modes through the deformation potential coupling. The optoelectronic mechanism is so efficient as to cool a mode down to 4 K from room temperature with just 50 uW of light and a cavity with a finesse of 10 consisting of a standard mirror and the sub-wavelength-thick semiconductor membrane itself. The laser-cooled narrow-band phonon bath realized with semiconductor mechanical resonators may open up a new avenue for photonics and spintronics devices.Comment: 5 pages, 4 figure

    Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity

    Get PDF
    We demonstrate a single-photon collection efficiency of (44.3±2.1)%(44.3\pm2.1)\% from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of g(2)(0)=(4±5)%g^{(2)}(0)=(4\pm5)\% recorded above the saturation power. The high efficiency is directly confirmed by detecting up to 962±46962\pm46 kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching 0.77±0.190.77\pm0.19 ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte

    Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics:Paper

    Get PDF
    We present detuning-dependent spectral and decay-rate measurements to study the difference between spectral and dynamical properties of single quantum dots embedded in micropillar and photonic-crystal cavities. For the micropillar cavity, the dynamics is well described by the dissipative Jaynes-Cummings model, while systematic deviations are observed for the emission spectra. The discrepancy for the spectra is attributed to coupling of other exciton lines to the cavity and interference of different propagation paths towards the detector of the fields emitted by the quantum dot. In contrast, quantitative information about the system can readily be extracted from the dynamical measurements. In the case of photonic crystal cavities we observe an anti crossing in the spectra when detuning a single quantum dot through resonance, which is the spectral signature of strong coupling. However, time-resolved measurements reveal that the actual coupling strength is significantly smaller than anticipated from the spectral measurements and that the quantum dot is rather weakly coupled to the cavity. We suggest that the observed Rabi splitting is due to cavity feeding by other quantum dots and/or multiexcition complexes giving rise to collective emission effects.Comment: 14 pages, 5 figures, submitte
    • …
    corecore