710 research outputs found

    Evaluating the role of alcohol consumption in breast and ovarian cancer susceptibility using population-based cohort studies and two-sample Mendelian randomization analyses.

    Get PDF
    Alcohol consumption is correlated positively with risk for breast cancer in observational studies, but observational studies are subject to reverse causation and confounding. The association with epithelial ovarian cancer (EOC) is unclear. We performed both observational Cox regression and two-sample Mendelian randomization (MR) analyses using data from various European cohort studies (observational) and publicly available cancer consortia (MR). These estimates were compared to World Cancer Research Fund (WCRF) findings. In our observational analyses, the multivariable-adjusted hazard ratios (HR) for a one standard drink/day increase was 1.06 (95% confidence interval [CI]; 1.04, 1.08) for breast cancer and 1.00 (0.92, 1.08) for EOC, both of which were consistent with previous WCRF findings. MR ORs per genetically predicted one standard drink/day increase estimated via 34 SNPs using MR-PRESSO were 1.00 (0.93, 1.08) for breast cancer and 0.95 (0.85, 1.06) for EOC. Stratification by EOC subtype or estrogen receptor status in breast cancers made no meaningful difference to the results. For breast cancer, the CIs for the genetically derived estimates include the point-estimate from observational studies so are not inconsistent with a small increase in risk. Our data provide additional evidence that alcohol intake is unlikely to have anything other than a very small effect on risk of EOC

    Breast cancer risk factors and their effects on survival: a Mendelian randomisation study

    Get PDF
    Abstract: Background: Observational studies have investigated the association of risk factors with breast cancer prognosis. However, the results have been conflicting and it has been challenging to establish causality due to potential residual confounding. Using a Mendelian randomisation (MR) approach, we aimed to examine the potential causal association between breast cancer-specific survival and nine established risk factors for breast cancer: alcohol consumption, body mass index, height, physical activity, mammographic density, age at menarche or menopause, smoking, and type 2 diabetes mellitus (T2DM). Methods: We conducted a two-sample MR analysis on data from the Breast Cancer Association Consortium (BCAC) and risk factor summary estimates from the GWAS Catalog. The BCAC data included 86,627 female patients of European ancestry with 7054 breast cancer-specific deaths during 15 years of follow-up. Of these, 59,378 were estrogen receptor (ER)-positive and 13,692 were ER-negative breast cancer patients. For the significant association, we used sensitivity analyses and a multivariable MR model. All risk factor associations were also examined in a model adjusted by other prognostic factors. Results: Increased genetic liability to T2DM was significantly associated with worse breast cancer-specific survival (hazard ratio [HR] = 1.10, 95% confidence interval [CI] = 1.03–1.17, P value [P] = 0.003). There were no significant associations after multiple testing correction for any of the risk factors in the ER-status subtypes. For the reported significant association with T2DM, the sensitivity analyses did not show evidence for violation of the MR assumptions nor that the association was due to increased BMI. The association remained significant when adjusting by other prognostic factors. Conclusions: This extensive MR analysis suggests that T2DM may be causally associated with worse breast cancer-specific survival and therefore that treating T2DM may improve prognosis

    Epigenetic regulation of F2RL3 associates with myocardial infarction and platelet function

    Get PDF
    DNA hypomethylation at the F2RL3 (F2R like thrombin or trypsin receptor 3) locus has been associated with both smoking and atherosclerotic cardiovascular disease; whether these smoking-related associations form a pathway to disease is unknown. F2RL3 encodes protease-activated receptor 4, a potent thrombin receptor expressed on platelets. Given the role of thrombin in platelet activation and the role of thrombus formation in myocardial infarction, alterations to this biological pathway could be important for ischemic cardiovascular disease. METHODS: We conducted multiple independent experiments to assess whether DNA hypomethylation at F2RL3 in response to smoking is associated with risk of myocardial infarction via changes to platelet reactivity. Using cohort data (N=3205), we explored the relationship between smoking, DNA hypomethylation at F2RL3, and myocardial infarction. We compared platelet reactivity in individuals with low versus high DNA methylation at F2RL3 (N=41). We used an in vitro model to explore the biological response of F2RL3 to cigarette smoke extract. Finally, a series of reporter constructs were used to investigate how differential methylation could impact F2RL3 gene expression. RESULTS: Observationally, DNA methylation at F2RL3 mediated an estimated 34% of the smoking effect on increased risk of myocardial infarction. An association between methylation group (low/high) and platelet reactivity was observed in response to PAR4 (protease-activated receptor 4) stimulation. In cells, cigarette smoke extract exposure was associated with a 4.9% to 9.3% reduction in DNA methylation at F2RL3 and a corresponding 1.7-(95% CI, 1.2–2.4, P=0.04) fold increase in F2RL3 mRNA. Results from reporter assays suggest the exon 2 region of F2RL3 may help control gene expression. CONCLUSIONS: Smoking-induced epigenetic DNA hypomethylation at F2RL3 appears to increase PAR4 expression with potential downstream consequences for platelet reactivity. Combined evidence here not only identifies F2RL3 DNA methylation as a possible contributory pathway from smoking to cardiovascular disease risk but from any feature potentially influencing F2RL3 regulation in a similar manner

    Incorporating Alternative Polygenic Risk Scores into the BOADICEA Breast Cancer Risk Prediction Model

    Full text link
    Background: The multifactorial risk prediction model BOADI-CEA enables identification of women at higher or lower risk of developing breast cancer. BOADICEA models genetic susceptibility in terms of the effects of rare variants in breast cancer susceptibility genes and a polygenic component, decomposed into an unmeasured and a measured component -the polygenic risk score (PRS). The current version was developed using a 313 SNP PRS. Here, we evaluated approaches to incorporating this PRS and alternative PRS in BOADICEA.Methods: The mean, SD, and proportion of the overall polygenic component explained by the PRS (a2) need to be estimated. a was estimated using logistic regression, where the age-specific log-OR is constrained to be a function of the age-dependent polygenic relative risk in BOADICEA; and using a retrospective likelihood (RL) approach that models, in addition, the unmeasured polygenic component.Results: Parameters were computed for 11 PRS, including 6 variations of the 313 SNP PRS used in clinical trials and imple-mentation studies. The logistic regression approach underestimates a, as compared with the RL estimates. The RL a estimates were very close to those obtained by assuming proportionality to the OR per 1 SD, with the constant of proportionality estimated using the 313 SNP PRS. Small variations in the SNPs included in the PRS can lead to large differences in the mean.Conclusions: BOADICEA can be readily adapted to different PRS in a manner that maintains consistency of the model.Impact : The methods described facilitate comprehensive breast cancer risk assessment
    corecore