24 research outputs found

    Role of Transient Receptor Potential Channels in Cholecystokinin-Induced Activation of Cultured Vagal Afferent Neurons

    No full text
    Cholecystokinin (CCK), an endogenous brain-gut peptide, is released after food intake and promotes the process of satiation via activation of the vagus nerve. In vitro, CCK increases cytosolic calcium concentrations and produces membrane depolarization in a subpopulation of vagal afferent neurons. However, the specific mechanisms and ionic conductances that mediate these effects remain unclear. In this study we used calcium imaging, electrophysiological measurements, and single cell PCR analysis on cultured vagal afferent neurons to address this issue directly. A cocktail of blockers of voltage-dependent calcium channels (VDCC) failed to block CCK-induced calcium responses. In addition, SKF96365, a compound that blocks both VDCC and the C family of transient receptor potential (TRP) channels, also failed to prevent responses to CCK. Together these results suggest that CCK-induced calcium influx is not subsequent to the membrane depolarization. Ruthenium red, an inhibitor of the TRPV family and TRPA1, blocked both depolarizing responses to CCK and CCK-induced calcium increases, but had no effect on the KCl-induced calcium response. Selective block of TRPV1 and TRPA1 channels with SB366791 and HC030031, respectively, had minor effects on the CCK-induced response. Application of 2-aminoethoxydiphenyl borate, an activator of select TRPV channels but a blocker of several TRPC channels, either had no effect or enhanced the responses to CCK. Further, results from PCR experiments revealed a significant clustering of TRPV2-5 in neurons expressing CCK1 receptors. These observations demonstrate that CCK-induced increases in cytosolic calcium and membrane depolarization of vagal afferent neurons are likely mediated by TRPV channels, excluding TRPV1

    Novel analysis of sleep patterns in rats separates periods of vigilance cycling from long-duration wake events

    No full text
    Rats are polyphasic sleepers. However, a formal definition of when one sleep episode ends and another begins has not been put forth. In the present study we examine the distribution of wake episode durations and based on this distribution conclude there are multiple components of wake. If the wake episode exceeds 300 sec the wake episode is assigned to long duration wake (LDW), if the episode is less than 300 sec it is assigned to brief wake (BW). Further support for this separation was found in close analysis of the EEG power spectrum in BW versus LDW. We then used LDW episodes to separate one sleep episode from another. We term the sleep episodes vigilance cycling (VC) because the rat is cycling between the vigilance states of brief wake (BW), slow-wave sleep (SWS), and rapid-eye movement sleep (REMS). We find that the characteristics of VC are different in the light period versus the dark period. We further find that as VC episodes progress, SWS pressure lessens, but the amount of time spent in REMS increases. These findings suggest that VC episodes are regulated and meaningful to the sleep behavior of rats. The use of the concepts of LDW and VC provides additional insights into the description of sleep patterns in rats that may be important in the development of a complete description of sleep behavior in this animal

    Chronic alcohol treatment in rats alters sleep by fragmenting periods of vigilance cycling in the light period with extended wakenings

    No full text
    Studies have shown that disturbed sleep produced by chronic alcohol abuse in humans can predict relapse drinking after periods of abstinence. How alcohol produces disturbed sleep remains unknown. In this study we used a novel analysis of sleep to examine the effects of alcohol on sleep patterns in rats. This analysis separates waking into multiple components and defines a period labeled vigilance cycling (VC) in which the rat rapidly cycles through various vigilance states. These VC episodes are separated by long duration wake periods (LDW). We find that 6 weeks of alcohol (6% in a liquid diet) caused fragmentation of extended VC episodes that normally occur in the light period. However, total daily amounts of slow-wave sleep (SWS) and rapid-eye movement sleep (REMS) remained constant. The daily amount of wake, SWS, and REMS remained constant because the alcohol treated rats increased the amount of VC in the dark period, and the sleep nature of VC in the dark period became more intense. In addition, we observed more wake and less REMS early in the light period in alcohol treated rats. All effects completely reversed by day 16 of alcohol withdrawal. Comparison of the effects of chronic alcohol to acute alcohol exposure demonstrated the effects of chronic alcohol are due to adaptation and not the acute presence of alcohol. The effects of chronic alcohol treatment in rats mimic the effects reported in humans (REMS suppression, difficulty falling asleep, and difficulty remaining asleep)

    Cholecystokinin activates both A- and C-type vagal afferent neurons

    No full text
    Patch-clamp electrophysiological methods were used on dissociated rat nodose neurons maintained in culture to determine whether responses to cholecystokinin (CCK) were associated with capsaicin-resistant (A type) or capsaicin-sensitive (C type) neurons. Nodose neurons were classified as A or C type on the basis of the characteristics of the Na+ current, a hyperpolarization-activated current, and sensitivity to a low concentration of capsaicin to ascertain the presence of vanilloid receptor 1 that has been associated with C-type neurons in sensory ganglia. It was expected that only capsaicin-sensitive C-type neurons would respond to CCK, because most vagally mediated actions of CCK are blocked by capsaicin treatment. However, we found that subpopulations of both A- and C-type neurons responded to CCK (24 and 38%, respectively). Thus some vagally mediated actions of CCK may be mediated by capsaicin insensitive A-type neurons

    Dose-response study of chronic alcohol induced changes in sleep patterns in rats

    No full text
    The goal of the present study was to determine an optimum exposure regimen for alterations in sleep induced by chronic alcohol treatments in rats. We used two different exposure routes (alcohol in water and alcohol in liquid diet at two different doses in each regimen (6% and 12% alcohol in water and 3% and 6% alcohol in liquid diet)). All treatments were for 6 weeks. We found the effects of the 6% and 12% in water and 3% in liquid diet to be very similar; all three produced increases in slow-wave sleep (SWS) only in the dark period with no changes in rapid-eye-movement sleep (REMS). On the other hand 6% alcohol in liquid diet caused much more dramatic changes, with alterations in both SWS and REMS in both the dark and light periods. These animals spent less time in SWS and REMS during the light period but more time in SWS and REMS in the dark period. Additionally, the variation of slow-wave amplitude (SWA) across day and night in this group of alcoholic animals is blunted with the loss of the peak of SWA at the beginning of light onset compared to the other groups. We conclude that future alcohol treatment regimens used to investigate the effects of alcohol on sleep in adult rats should use an exposure protocol of at least 6 weeks with 6% alcohol in liquid diet

    Expression of transient receptor potential channels and two-pore potassium channels in subtypes of vagal afferent neurons in rat

    No full text
    Vagal afferent neurons relay important information regarding the control of the gastrointestinal system. However, the ionic mechanisms that underlie vagal activation induced by sensory inputs are not completely understood. We postulate that transient receptor potential (TRP) channels and/or two-pore potassium (K2p) channels are targets for activating vagal afferents. In this study we explored the distribution of these channels in vagal afferents by quantitative PCR after a capsaicin treatment to eliminate capsaicin-sensitive neurons, and by single-cell PCR measurements in vagal afferent neurons cultured after retrograde labeling from the stomach or duodenum. We found that TRPC1/3/5/6, TRPV1-4, TRPM8, TRPA1, TWIK2, TRAAK, TREK1, and TASK1/2 were all present in rat nodose ganglia. Both lesion results and single-cell PCR results suggested that TRPA1 and TRPC1 were preferentially expressed in neurons that were either capsaicin sensitive or TRPV1 positive. Expression of TRPM8 varied dynamically after various manipulations, which perhaps explains the disparate results obtained by different investigators. Last, we also examined ion channel distribution with the A-type CCK receptor (CCK-RA) and found there was a significant preference for neurons that express TRAAK to also express CCK-RA, especially in gut-innervating neurons. These findings, combined with findings from prior studies, demonstrated that background conductances such as TRPC1, TRPA1, and TRAAK are indeed differentially distributed in the nodose ganglia, and not only do they segregate with specific markers, but the degree of overlap is also dependent on the innervation target

    Pharmacological investigations of the cellular transduction pathways used by cholecystokinin to activate nodose neurons

    No full text
    Cholecystokinin (CCK) directly activates vagal afferent neurons resulting in coordinated gastrointestinal functions and satiation. In vitro, the effects of CCK on dissociated vagal afferent neurons are mediated via activation of the vanilloid family of transient receptor potential (TRPV) cation channels leading to membrane depolarization and an increase in cytosolic calcium. However, the cellular transduction pathway(s) involved in this process between CCK receptors and channel opening have not been identified. To address this question, we monitored CCK-induced cytosolic calcium responses in dissociated nodose neurons from rat in the presence or absence of reagents that interact with various intracellular signaling pathways. We found that the phospholipase C (PLC) inhibitor U-73122 significantly attenuated CCK-induced responses, whereas the inactive analog U-73433 had no effect. Responses to CCK were also cross-desensitized by a brief pretreatment with m-3M3FBS, a PLC stimulator. Together these observations strongly support the participation of PLC in the effects of CCK on vagal afferent neurons. In contrast, pharmacological antagonism of phospholipase A2, protein kinase A, and phosphatidylinositol 3-kinase revealed that they are not critical in the CCK-induced calcium response in nodose neurons. Further investigations of the cellular pathways downstream of PLC showed that neither protein kinase C (PKC) nor generation of diacylglycerol (DAG) or release of calcium from intracellular stores participates in the response to CCK. These results suggest that alteration of membrane phosphatidylinositol 4,5-bisphosphate (PIP2) content by PLC activity mediates CCK-induced calcium response and that this pathway may underlie the vagally-mediated actions of CCK to induce satiation and alter gastrointestinal functions
    corecore