153 research outputs found

    Preference-free option pricing with path-dependent volatility: A closed-form approach

    Get PDF
    This paper shows how one can obtain a continuous-time preference-free option pricing model with a path-dependent volatility as the limit of a discrete-time GARCH model. In particular, the continuous-time model is the limit of a discrete-time GARCH model of Heston and Nandi (1997) that allows asymmetry between returns and volatility. For the continuous-time model, one can directly compute closed-form solutions for option prices using the formula of Heston (1993). Toward that purpose, we present the necessary mappings, based on Foster and Nelson (1994), such that one can approximate (arbitrarily closely) the parameters of the continuous-time model on the basis of the parameters of the discrete-time GARCH model. The discrete-time GARCH parameters can be estimated easily just by observing the history of asset prices. ; Unlike most option pricing models that are based on the absence of arbitrage alone, a parameter related to the expected return/risk premium of the asset does appear in the continuous-time option formula. However, given other parameters, option prices are not at all sensitive to the risk premium parameter, which is often imprecisely estimated.Options (Finance)

    A closed-form GARCH option pricing model

    Get PDF
    This paper develops a closed-form option pricing formula for a spot asset whose variance follows a GARCH process. The model allows for correlation between returns of the spot asset and variance and also admits multiple lags in the dynamics of the GARCH process. The single-factor (one-lag) version of this model contains Heston's (1993) stochastic volatility model as a diffusion limit and therefore unifies the discrete-time GARCH and continuous-time stochastic volatility literature of option pricing. The new model provides the first readily computed option formula for a random volatility model in which current volatility is easily estimated from historical asset prices observed at discrete intervals. Empirical analysis on S&P 500 index options shows the single-factor version of the GARCH model to be a substantial improvement over the Black-Scholes (1973) model. The GARCH model continues to substantially outperform the Black-Scholes model even when the Black-Scholes model is updated every period and uses implied volatilities from option prices, while the parameters of the GARCH model are held constant and volatility is filtered from the history of asset prices. The improvement is due largely to the ability of the GARCH model to describe the correlation of volatility with spot returns. This allows the GARCH model to capture strike-price biases in the Black-Scholes model that give rise to the skew in implied volatilities in the index options market.Econometric models ; Financial markets ; Options (Finance) ; Prices

    A discrete-time two-factor model for pricing bonds and interest rate derivatives under random volatility

    Get PDF
    This paper develops a discrete-time two-factor model of interest rates with analytical solutions for bonds and many interest rate derivatives when the volatility of the short rate follows a GARCH process that can be correlated with the level of the short rate itself. Besides bond and bond futures, the model yields analytical solutions for prices of European options on discount bonds (and futures) as well as other interest rate derivatives such as caps, floors, average rate options, yield curve options, etc. The advantage of our discrete-time model over continuous-time stochastic volatility models is that volatility is an observable function of the history of the spot rate and is easily (and exactly) filtered from the discrete observations of a chosen short rate/bond prices. Another advantage of our discrete-time model is that for derivatives like average rate options, the average rate can be exactly computed because, in practice, the payoff at maturity is based on the average of rates that can be observed only at discrete time intervals. ; Calibrating our two-factor model to the treasury yield curve (eight different maturities) for a few randomly chosen intervals in the period 1990–96, we find that the two-factor version does not improve (statistically and economically) upon the nested one-factor model (which is a discrete-time version of the Vasicek 1977 model) in terms of pricing the cross section of spot bonds. This occurs although the one-factor model is rejected in favor of the two-factor model in explaining the time-series properties of the short rate. However, the implied volatilities from the Black model (a one-factor model) for options on discount bonds exhibit a smirk if option prices are generated by our model using the parameter estimates obtained as above. Thus, our results indicate that the effects of random volatility of the short rate are manifested mostly in bond option prices rather than in bond prices.Bonds ; Options (Finance) ; Interest rates ; Derivative securities

    Derivatives on volatility: some simple solutions based on observables

    Get PDF
    Proposals to introduce derivatives whose payouts are explicitly linked to the volatility of an underlying asset have been around for some time. In response to these proposals, a few papers have tried to develop valuation formulae for volatility derivatives—derivatives that essentially help investors hedge the unpredictable volatility risk. This paper contributes to this nascent literature by developing closed-form/analytical formulae for prices of options and futures on volatility as well as volatility swaps. The primary contribution of this paper is that, unlike all other models, our model is empirically viable and can be easily implemented. ; More specifically, our model distinguishes itself from other proposed solutions/models in the following respects: (1) Although volatility is stochastic, it is an exact function of the observed path of asset prices. This is crucial in practice because nonobservability of volatility makes it very difficult (in fact, impossible) to arrive at prices and hedge ratios of volatility derivatives in an internally consistent fashion, as it is akin to not knowing the stock price when trying to price an equity derivative. (2) The model does not require an unobserved volatility risk premium, nor is it predicated on the strong assumption of the existence of a continuum of options of all strikes and maturities as in some papers. (3) We show how it is possible to replicate (delta hedge) volatility derivatives by trading only in the underlying asset (on whose volatility the derivative exists) and a risk-free asset. This bypasses the problem of having to trade numerously many options on the underlying asset, a hedging strategy proposed in some other models.Derivative securities ; Hedging (Finance) ; Options (Finance)

    A closed-form GARCH option pricing model

    Full text link
    This paper develops a closed-form option pricing formula for a spot asset whose variance follows a GARCH process. The model allows for correlation between returns of the spot asset and variance and also admits multiple lags in the dynamics of the GARCH process. The single-factor (one-lag) version of this model contains Heston's (1993) stochastic volatility model as a diffusion limit and therefore unifies the discrete-time GARCH and continuous-time stochastic volatility literature of option pricing. The new model provides the first readily computed option formula for a random volatility model in which current volatility is easily estimated from historical asset prices observed at discrete intervals. Empirical analysis on S&P 500 index options shows the single-factor version of the GARCH model to be a substantial improvement over the Black-Scholes (1973) model. The GARCH model continues to substantially outperform the Black-Scholes model even when the Black-Scholes model is updated every period and uses implied volatilities from option prices, while the parameters of the GARCH model are held constant and volatility is filtered from the history of asset prices. The improvement is due largely to the ability of the GARCH model to describe the correlation of volatility with spot returns. This allows the GARCH model to capture strike-price biases in the Black-Scholes model that give rise to the skew in implied volatilities in the index options market

    Preference-Free Option Pricing with Path-Dependent Volatility: A Closed-Form Approach

    Full text link
    This paper shows how one can obtain a continuous-time preference-free option pricing model with a path-dependent volatility as the limit of a discrete-time GARCH model. In particular, the continuous-time model is the limit of a discrete-time GARCH model of Heston and Nandi (1997) that allows asymmetry between returns and volatility. For the continuous-time model, one can directly compute closed-form solutions for option prices using the formula of Heston (1993). Toward that purpose, we present the necessary mappings, based on Foster and Nelson (1994), such that one can approximate (arbitrarily closely) the parameters of the continuous-time model on the basis of the parameters of the discrete-time GARCH model. The discrete-time GARCH parameters can be estimated easily just by observing the history of asset prices. ; Unlike most option pricing models that are based on the absence of arbitrage alone, a parameter related to the expected return/risk premium of the asset does appear in the continuous-time option formula. However, given other parameters, option prices are not at all sensitive to the risk premium parameter, which is often imprecisely estimated

    Estimating Correlated Jumps and Stochastic Volatilities

    Full text link
    We formulate a bivariate stochastic volatility jump-diffusion model with correlated jumps and volatilities. An MCMC Metropolis-Hastings sampling algorithm is proposed to estimate the model's parameters and latent state variables (jumps and stochastic volatilities) given observed returns. The methodology is successfully tested on several artificially generated bivariate time series and then on the two most important Czech domestic financial market time series of the FX (CZK/EUR) and stock (PX index) returns. Four bivariate models with and without jumps and/or stochastic volatility are compared using the deviance information criterion (DIC) confirming importance of incorporation of jumps and stochastic volatility into the model
    • …
    corecore