2 research outputs found
Variational Bayes for Merging Noisy Databases
Bayesian entity resolution merges together multiple, noisy databases and returns the minimal collection of unique individuals represented, together with their true, latent record values. Bayesian methods allow flexible generative models that share power across databases as well as principled quantification of uncertainty for queries of the final, resolved database. However, existing Bayesian methods for entity resolution use Markov monte Carlo method (MCMC) approximations and are too slow to run on modern databases containing millions or billions of records. Instead, we propose applying variational approximations to allow scalable Bayesian inference in these models. We derive a coordinate-ascent approximation for mean-field variational Bayes, qualitatively compare our algorithm to existing methods, note unique challenges for inference that arise from the expected distribution of cluster sizes in entity resolution, and discuss directions for future work in this domain
Microclustering: When the Cluster Sizes Grow Sublinearly with the Size of the Data Set
Most generative models for clustering implicitly assume that the number of data points in each cluster grows linearly with the total number of data points. Finite mixture models, Dirichlet process mixture models, and Pitman--Yor process mixture models make this assumption, as do all other infinitely exchangeable clustering models. However, for some tasks, this assumption is undesirable. For example, when performing entity resolution, the size of each cluster is often unrelated to the size of the data set. Consequently, each cluster contains a negligible fraction of the total number of data points. Such tasks therefore require models that yield clusters whose sizes grow sublinearly with the size of the data set. We address this requirement by defining the \emph{microclustering property} and introducing a new model that exhibits this property. We compare this model to several commonly used clustering models by checking model fit using real and simulated data sets