446 research outputs found
Quantum dissipative systems from theory of continuous measurements
We apply the restricted-path-integral (RPI) theory of non-minimally
disturbing continuous measurements for correct description of frictional
Brownian motion. The resulting master equation is automatically of the Lindblad
form, so that the difficulties typical of other approaches do not exist. In the
special case of harmonic oscillator the known familiar master equation
describing its frictionally driven Brownian motion is obtained. A thermal
reservoir as a measuring environment is considered.Comment: 10 pages in LATE
Weisskopf-Wigner model for wave packet excitation
We consider a laser induced molecular excitation process as a decay of a
single energy state into a continuum. The analytic results based on
Weisskopf-Wigner approach and perturbation calculations are compared with
numerical wave packet results. We find that the decay model describes the
excitation process well within the expected parameter region.Comment: 14 pages, Latex2.09, 9 Postscript figures embedded using psfig, see
also http://www.physics.helsinki.fi/~kasuomin
Transient effects on electron spin observation
In an earlier publication we addressed the problem of splitting an electron beam in the Stern-Gerlach experiment. In contrast to arguments put forward in the early days of quantum theory, we concluded that there are no issues of principle preventing the observation of electron spin during free flight. In that paper, however, we considered only a sudden switch off of the separating magnetic field. In this work we consider the possible effects of finite switching times at the beginning and the end of the interaction period. We consider a model where the coupling between the electron and the field is time dependent. As a result of the time dependence, the field also acquires an electric component, but this seems to cause no significant change of our conclusions. On the other hand, the smooth change of the interaction enforces the same longitudinal velocity on the electron both at the beginning and end of the interaction period because of conservation laws; this effect was missing in our earlier calculations. As the electrons are supposed to travel as a beam, this feature helps by restoring the beam quality after the interaction
Statistics of Velocity from Spectral Data: Modified Velocity Centroids
We address the problem of studying interstellar turbulence using spectral
line data. We find a criterion when the velocity centroids may provide
trustworthy velocity statistics. To enhance the scope of centroids
applications, we construct a measure that we term ``modified velocity
centroids'' (MVCs) and derive an analytical solution that relates the 2D
spectra of the modified centroids with the underlying 3D velocity spectrum. We
test our results using synthetic maps constructed with data obtained through
simulations of compressible magnetohydrodynamical (MHD) turbulence. We show
that the modified velocity centroids (MVCs) are complementary to the the
Velocity Channel Analysis (VCA) technique. Employed together, they make
determining of the velocity spectral index more reliable and for wider variety
of astrophysical situations.Comment: 4 pages, 1 figure, Accepted for publication in ApJ Letters. minor
change
Nonlinear magneto-optical rotation in optically thick media
Nonlinear magneto-optical rotation is a sensitive technique for measuring
magnetic fields. Here, the shot-noise-limited magnetometric sensitivity is
analyzed for the case of optically-thick media and high light power, which has
been the subject of recent experimental and theoretical investigations.Comment: 7 pages, 4 figure
Sudden death and sudden birth of entanglement in common structured reservoirs
We study the exact entanglement dynamics of two qubits in a common structured
reservoir. We demonstrate that, for certain classes of entangled states,
entanglement sudden death occurs, while for certain initially factorized
states, entanglement sudden birth takes place. The backaction of the
non-Markovian reservoir is responsible for revivals of entanglement after
sudden death has occurred, and also for periods of disentanglement following
entanglement sudden birth.Comment: 4 pages, 2 figure
Measuring the Density Matrix by Local Addressing
We introduce a procedure to measure the density matrix of a material system.
The density matrix is addressed locally in this scheme by applying a sequence
of delayed light pulses. The procedure is based on the stimulated Raman
adiabatic passage (STIRAP) technique. It is shown that a series of population
measurements on the target state of the population transfer process yields
unambiguous information about the populations and coherences of the addressed
states, which therefore can be determined.Comment: 4 pages, 1 figur
Detailed studies of non-linear magneto-optical resonances at D1 excitation of Rb-85 and Rb-87 for partially resolved hyperfine F-levels
Experimental signals of non-linear magneto-optical resonances at D1
excitation of natural rubidium in a vapor cell have been obtained and described
with experimental accuracy by a detailed theoretical model based on the optical
Bloch equations. The D1 transition of rubidium is a challenging system to
analyze theoretically because it contains transitions that are only partially
resolved under Doppler broadening. The theoretical model took into account all
nearby transitions, the coherence properties of the exciting laser radiation,
and the mixing of magnetic sublevels in an external magnetic field and also
included averaging over the Doppler profile. Great care was taken to obtain
accurate experimental signals and avoid systematic errors. The experimental
signals were reproduced very well at each hyperfine transition and over a wide
range of laser power densities, beam diameters, and laser detunings from the
exact transition frequency. The bright resonance expected at the F_g=1 -->
F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at
the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position
of the transition due to the influence of the nearby F_g=2 --> F_e=2
transition, which is a dark resonance whose contrast is almost two orders of
magnitude larger than the contrast of the bright resonance at the F_g=2 -->
F_e=3 transition. Even in this very delicate situation, the theoretical model
described in detail the experimental signals at different laser detunings.Comment: 11 pages, 9 figure
Observing the spin of a free electron
Long ago, Bohr, Pauli, and Mott argued that it is not, in principle, possible to measure the spin components of a free electron. One can try to use a Stern-Gerlach type of device, but the finite size of the beam results in an uncertainty of the splitting force that is comparable with the gradient force. The result is that no definite spin measurement can be made. Recently there has been a revival of interest in this problem, and we will present our own analysis and quantum-mechanical wave-packet calculations which suggest that a spin measurement is possible for a careful choice of initial conditions
- …