30 research outputs found
NMR imaging of water flow in packed beds
Measurements by magnetic resonance imaging (MRI) of water flow within granular porous media are presented in this study.
Our goal was not only to obtain visualizations of velocity field in porous media but rather to make accurate measurements of interstitial and averaged velocities in bead packs. Two situations were examined: the first for a packed bed with a large beads diameter where it was possible to visualize the interstitial velocities and the second with a packed bed with a small beads diameter where only averaged interstitial velocities were measured
Study of dispersion by NMR: comparison between NMR measurements and stochastic simulation
Dispersion remains, today, a highly topical subject. Our group has been interested in characterizing this phenomenon by pulsed-field-gradient NMR technique. Direct measurement of the dispersion coefficient can be done with a Pulsed Gradient Spin Echo (PGSE) sequence by assuming that the asymptotic regime is reached. In unsteady state, the propagator formalism is used. To better understand these measurements, the NMR experiment is modeled using a stochastic simulation (random walks) and compared with experimental results. The comparison is made for the simple case of Poiseuille flow in a circular tube (Taylor-Aris dispersion)
Study of dispersion by NMR: comparison between NMR measurements and stochastic simulation
Dispersion remains, today, a highly topical subject. Our group has been interested in characterizing this phenomenon by pulsed-field-gradient NMR technique. Direct measurement of the dispersion coefficient can be done with a Pulsed Gradient Spin Echo (PGSE) sequence by assuming that the asymptotic regime is reached. In unsteady state, the propagator formalism is used. To better understand these measurements, the NMR experiment is modeled using a stochastic simulation (random walks) and compared with experimental results. The comparison is made for the simple case of Poiseuille flow in a circular tube (Taylor-Aris dispersion)
Ăbullition en milieu poreux capillaire : modĂ©lisation et expĂ©rimentation
Not availableCette Ă©tude est consacrĂ©e Ă la description de l'Ă©bullition dans une couche poreuse horizontale initialement saturĂ©e par un fluide (eau). La face inferieure impermĂ©able est chauffĂ©e Ă flux constant tandis que la face supĂ©rieure est refroidie Ă tempĂ©rature constante et reste saturĂ©e par le fluide Ă pression atmosphĂ©rique. On examine d'abord les solutions en rĂ©gime permanent de ce problĂšme. Lâinfluence de la conduction en zone diphasique, celle des pertes latĂ©rales de chaleur et celle de la prise en compte de gaz incondensable (air) contenu dans le milieu sont successivement analysĂ©es. On aborde ensuite l'aspect transitoire du phĂ©nomĂšne dans le cas ou il n'existe pas de zone saturĂ©e de vapeur. Une modĂ©lisation numĂ©rique utilisant une discrĂ©tisation spatiale Ă©volutive est dĂ©veloppĂ©e. On mĂšne parallĂšlement Ă la thĂ©orie une Ă©tude expĂ©rimentale en s'intĂ©ressant aux Ă©volutions du champ de tempĂ©rature et du champ d'humiditĂ© dans le milieu poreux. La mesure de la teneur en eau est rĂ©alisĂ©e par gammamĂ©trie. On met finalement en Ă©vidence, expĂ©rimentalement, une instabilitĂ© pĂ©riodique pour des flux de chaleur Ă©levĂ©s. Les conditions nĂ©cessaires Ă l'apparition d'un tel phĂ©nomĂšne sont examinĂ©es thĂ©oriquemen
Imagerie par Résonance Magnétique pour la vélocimétrie d'un fluide en milieu poreux
Cette étude présente la mise au point de mesures de porosité et de vitesse d écoulement faites par IRM dans des colonnes de billes de verre et de polymÚre de différentes granulométries saturées en eau. L avantage des billes en polymÚre est qu elles ne contiennent pas d éléments ferro ou paramagnétiques, contrairement aux billes de verre qui perturbent le champ magnétique créant des artéfacts sur les images IRM. La séquence d IRM utilisée pour l étude des écoulements en milieu poreux a été préalablement paramétrée à l aide d une étude sur un écoulement de Poiseuille. Deux situations ont été examinées : d une part, l observation des écoulements interstitiels entre les billes permet de minimiser les effets de volume partiel et de faciliter la correction du phénomÚne de repliement de phase. D autre part, la mesure de vitesses moyennes (Darcy) nécessite d utiliser simultanément les images de vitesse et les images de porosité. Dans ce cas, il est préférable d ajuster la puissance des gradients d encodage de vitesse de façon à éviter tout phénomÚne de repliement de phase. La géométrie du dispositif utilisé a permis une comparaison rigoureuse des mesures de débit de façon intrinsÚque uniquement par IRM (débit en milieu poreux et dans l espace annulaire) et aussi à partir de la mesure directe du débit (pesée).This study presents the development of measurement of porosity and velocity of flow made by MRI in packed beds with glass and polymer beads of various size saturated in water. The advantage of polymer beads is that they do not contain elements ferro or paramagnetics, contrary to the glass beads which disrupt the magnetic field creating artifacts on the MRI images. The calibration of the MRI velocity measurements was achieved from Poiseuille flow in a tube at different flow rates. Two situations were examined: first, the observation of interstitial flows between the beads minimizes partial volume effects and facilitates the correction of the phenomenon of phase aliasing. On the other hand, the measurement of average interstitial velocity (Darcy) requires using simultaneous velocity image and porosity image. In this case, it is preferable to adjust the strength of magnetic field gradient in the velocimetry sequence in a way to avoid any phase aliasing. The geometry of the flow cell was chosen to enable comparison by the MRI method between volume flow rates of water in the porous media and in the outer annulus.NANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF
Porosity, Pore Structure, and Fluid Distribution in the Sediments Entering the Northern Hikurangi Margin, New Zealand
International audienceHosting both tsunami earthquakes and slow slip events at shallow depth, the northern Hikurangi margin has motivated strong research efforts over the last two decades to better understand the relation between fluid pressure and fault mechanical behavior. Recently, IODP Expeditions 372 and 375 drilled, cored, and logged the basin entering this subduction zone providing a unique opportunity to characterize initial hydrogeological and petrophysical properties that drive seismic hazards along the margin. We inventory bound and interstitial fluid contents and assess the compaction state of the heterogeneous incoming sequence by correcting shipboard total connected porosity from the bound water content that typically characterizes clayârich sediments. By combining mercury injection capillary pressure, nuclear magnetic resonance, and nitrogen gas adsorption, we further document the evolution of pore structure with increasing depth. We also compare porosity data at the logging and sample scales. Both logging and laboratory data evidence contrasted porosity, pore structure, and fluid distribution across the entering section. Shallow macroporous siliciclastic units show very low bound water content and undergo compactionâinduced dewatering as they are normally consolidated during burial. In contrast, mesoporous volcaniclastic Hikurangi Plateau facies are characterized by high potential for bound water release from smectite, zeolite, and opal dehydration at greater depths. They mostly exhibit very low permeability except potentially in uncemented highly porous intervals where the dĂ©collement may initiate. Macroporous to mesoporous pelagic carbonates sandwiched in between exhibit mixed behavior and may also host the future dĂ©collement, similarly to the southern part of the margin
Mesures couplées de vitesse et de température par IRM pour l'étude de la convection de Rayleigh Benard
International audienceL'Ă©tude des transferts thermiques par conduction et convection reprĂ©sente un vaste champ d'applications industrielles et environnementales. L'apparition et l'Ă©volution des instabilitĂ©s thermo-convectives ainsi que leur dynamique reprĂ©sentent un intĂ©rĂȘt majeur car les transferts thermiques sont amĂ©liorĂ©s lors du passage du rĂ©gime conductif au rĂ©gime convectif. Dans cette Ă©tude, la configuration Ă©tudiĂ©e est celle de Rayleigh-BĂ©nard, pour laquelle l'origine de l'instabilitĂ© convective est due Ă un gradient vertical de tempĂ©rature entre deux plaques horizontales. Lorsque la diffĂ©rence de tempĂ©rature est faible et le fluide visqueux, le rĂ©gime est purement conductif et il n'y a pas d'Ă©coulement du fluide. PassĂ© une certaine diffĂ©rence de tempĂ©rature, des structures convectives se forment et l'Ă©coulement dĂ©marre. Du fait de la possibilitĂ© de cartographier avec la mĂȘme technique diffĂ©rentes grandeurs physiques, l'IRM s'avĂšre un outil intĂ©ressant pour Ă©tudier ce phĂ©nomĂšne. Cependant, si la mesure de vitesse d'Ă©coulement par IRM est une technique frĂ©quemment utilisĂ©e en mĂ©canique des fluides et donne de bons rĂ©sultats dans nos systĂšmes, la mesure de tempĂ©rature est plus dĂ©licate. Nous avons comparĂ© les principales techniques de thermomĂ©trie IRM : cartographie de la phase du signal, du coefficient de diffusion ou des temps de relaxation. Cette derniĂšre technique semble ĂȘtre la plus adaptĂ©e dans le cas du glycĂ©rol et la carte obtenue est parfaitement en accord avec les mesures de vitesse. La mĂ©thode a aussi Ă©tĂ© utilisĂ©e sur un fluide rhĂ©ofluidifiant, le xanthane. Si la mesure de vitesse reste satisfaisante, des difficultĂ©s apparaissent lorsque l'Ă©cart de tempĂ©rature devient trop Ă©levĂ©. Cela semble liĂ© aux valeurs des temps de relaxation beaucoup plus long dans le cas du xanthane que du glycĂ©rol. La mĂ©thode a aussi Ă©tĂ© utilisĂ©e sur un fluide rhĂ©ofluidifiant, le xanthane. Si la mesure de vitesse reste satisfaisante, des difficultĂ©s apparaissent lorsque lâĂ©cart de tempĂ©rature devient trop Ă©levĂ©. Cela semble liĂ© aux valeurs des temps de relaxation beaucoup plus long dans le cas du xanthane que du glycĂ©rol
Studying of parameters of two-phase displacement in porous media with MRI technique
This study describes experimental research on two-phase flow displacement using Magnetic Resonance Imaging (MRI) techniques. The overall purpose of this investigation is to determine kinetics process of phase trapping during (water-oil) two-phase flow, the front deformation and the phases saturation propagation along a vertical model. In these water flooding experiments, the porous medium model consists of packed beads of polystyrene (0.4âmm < dp < 0.6âmm) or sand grains (0.02âmm < dp < 0.50âmm). In order to conduct high accuracy experiments, a Nuclear Magnetic Resonance (NMR) spectrometer operating at 14 T (corresponding to a 600âMHz 1H resonance) equipped with an imaging device was used. With this equipment we can measure and visualize the two-phase flow in a vertical model of porous medium under ambient conditions. The obtained results have shown that the oil saturation profile is strongly influenced by the material properties such as the phase wetting, the sample porosity and permeability as well as the injection rate. The influence of flow velocity on the residual oil saturation was also studied. The experimental results allow an essential understanding of immiscible fluid displacement in two different types of porous medium that differ from each other mainly by the effects of wettability
NMR imaging of water flow in packed beds
Measurements by magnetic resonance imaging (MRI) of water flow within granular porous media are presented in this study.
Our goal was not only to obtain visualizations of velocity field in porous media but rather to make accurate measurements of interstitial and averaged velocities in bead packs. Two situations were examined: the first for a packed bed with a large beads diameter where it was possible to visualize the interstitial velocities and the second with a packed bed with a small beads diameter where only averaged interstitial velocities were measured