5 research outputs found

    Recorder/processor apparatus

    Get PDF
    Laser beam is intensity modulated in response to incoming video signals. Latent image is recorded on rotating drum which generates raster in conjunction with incrementally-driven lens carriage. Image is fed automatically to thermal processor; actual image is developed by controlled application of heat onto medium containing latent image

    Toward Comprehensive Per- and Polyfluoroalkyl Substances Annotation Using FluoroMatch Software and Intelligent High-Resolution Tandem Mass Spectrometry Acquisition

    Full text link
    Thousands of per- and polyfluoroalkyl substances (PFAS) exist in the environment and pose a potential health hazard. Suspect and nontarget screening with liquid chromatography (LC)–high-resolution tandem mass spectrometry (HRMS/MS) can be used for comprehensive characterization of PFAS. To date, no automated open source PFAS data analysis software exists to mine these extensive data sets. We introduce FluoroMatch, which automates file conversion, chromatographic peak picking, blank feature filtering, PFAS annotation based on precursor and fragment masses, and annotation ranking. The software library currently contains ∼7 000 PFAS fragmentation patterns based on rules derived from standards and literature, and the software automates a process for users to add additional compounds. The use of intelligent data-acquisition methods (iterative exclusion) nearly doubled the number of annotations. The software application is demonstrated by characterizing PFAS in landfill leachate as well as in leachate foam generated to concentrate the compounds for remediation purposes. FluoroMatch had wide coverage, returning 27 PFAS annotations for landfill leachate samples, explaining 71% of the all-ion fragmentation (CF2)n related fragments. By improving the throughput and coverage of PFAS annotation, FluoroMatch will accelerate the discovery of PFAS posing significant human risk

    An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry

    Full text link
    Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS

    FluoroMatch Suite 3 Software: Advancing Non-Targeted Analysis for the Comprehensive Detection and Identification of PFAS

    Full text link
    Presentation to SETAC in Nov. 12-16, 2023 in Louisville, KYScience Inventory, CCTE products: https://cfpub.epa.gov/si/si_public_search_results.cfm?advSearch=true&showCriteria=2&keyword=CCTE&TIMSType=&TIMSSubTypeID=&epaNumber=&ombCat=Any&dateBeginPublishedPresented=07/01/2017&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&DEID=&personName=&personID=&role=Any&journalName=&journalID=&publisherName=&publisherID=&sortBy=pubDate&count=25</p
    corecore