1,096 research outputs found
Molecular Energy Transfer and Spectroscopy
Contains research objectives and reports on one research project.National Science Foundation (Grant GP-6504)Petroleum Research Fund (Grant 2523-A5)Sloan Foundation for Basic Research (M.I.T. Grant
Recommended from our members
High efficiency carbonate fuel cell/turbine hybrid power cycles
Carbonate fuel cells developed in commercial 2.85 MW size, have an efficiency of 57.9%. Studies of higher efficiency hybrid power cycles were conducted to identify an economically competitive system and an efficiency over 65%. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine, and a steam cycle, which generates power at a LHV efficiency over 70%; it is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95% of the fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming the fuel, and flows to a direct carbonate fuel cell system which generates 72% of the power. The portion of fuel cell anode exhaust not recycled, is burned and heat is transferred to compressed air from a gas turbine, heating it to 1800 F. The stream is then heated to 2000 F in gas turbine burner and expands through the turbine generating 13% of the power. Half the gas turbine exhaust flows to anode exhaust burner and the rest flows to the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Studies of the TTC for 200 and 20 MW size plants quantified performance, emissions and cost-of-electricity, and compared the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6%; estimated cost of electricity is 45.8 mills/kWhr. A 20-MW TTC plant has an efficiency of 65.2% and a cost of electricity of 50 mills/kWhr
Comparison of conventional Lagrangian stochastic footprint models against LES driven footprint estimates
In this study we introduce a comparison method for footprint model results by evaluating the performance of conventional Lagrangian stochastic (LS) footprint models that use parameterised flow field characteristics with results of a Lagrangian trajectory model embedded in a large eddy simulation (LES) framework. The two conventional models follow the particles backward and forward in time while the trajectories in LES only evolve forward in time. We assess their performance in two unstably stratified boundary layers at observation levels covering the whole depth of the atmospheric boundary layer. We present a concept for footprint model comparison that can be applied for 2-D footprints and demonstrate that comparison of only cross wind integrated footprints is not sufficient for purposes facilitating two dimensional footprint information. Because the flow field description among the three models is most realistic in LES we use those results as the reference in the comparison. We found that the agreement of the two conventional models against the LES is generally better for intermediate measurement heights and for the more unstable case, whereas the two conventional flux footprint models agree best under less unstable conditions. The model comparison in 2-D was found quite sensitive to the grid resolution
Recommended from our members
Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project
The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation
Recommended from our members
High efficiency carbonate fuel cell/turbine hybrid power cycle
The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed
Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study
An intentional yaw misalignment of wind turbines is currently discussed as
one possibility to increase the overall energy yield of wind farms. The idea
behind this control is to decrease wake losses of downstream turbines by
altering the wake trajectory of the controlled upwind turbines. For an
application of such an operational control, precise knowledge about the
inflow wind conditions, the magnitude of wake deflection by a yawed turbine
and the propagation of the wake is crucial. The dependency of the wake
deflection on the ambient wind conditions as well as the uncertainty of its
trajectory are not sufficiently covered in current wind farm control models.
In this study we analyze multiple sources that contribute to the uncertainty
of the estimation of the wake deflection downstream of yawed wind turbines in
different ambient wind conditions. We find that the wake shapes and the
magnitude of deflection differ in the three evaluated atmospheric boundary
layers of neutral, stable and unstable thermal stability. Uncertainty in the
wake deflection estimation increases for smaller temporal averaging
intervals. We also consider the choice of the method to define the wake
center as a source of uncertainty as it modifies the result. The variance of
the wake deflection estimation increases with decreasing atmospheric
stability. Control of the wake position in a highly convective environment is
therefore not recommended
PrivGenDB: Efficient and privacy-preserving query executions over encrypted SNP-Phenotype database
Privacy and security issues limit the query executions over genomics datasets, notably single nucleotide polymorphisms (SNPs), raised by the sensitivity of this type of data. Therefore, it is important to ensure that executing queries on these datasets do not reveal sensitive information, such as the identity of the individuals and their genetic traits, to a data server. In this paper, we propose and present a novel model, we call PrivGenDB, to ensure the confidentiality of SNP-phenotype data while executing queries. The confidentiality in PrivGenDB is enabled by its system architecture and the search functionality provided by searchable symmetric encryption (SSE). To the best of our knowledge, PrivGenDB construction is the first SSE-based approach ensuring the confidentiality of SNP-phenotype data as the current SSE-based approaches for genomic data are limited only to substring search and range queries on a sequence of genomic data. Besides, a new data encoding mechanism is proposed and incorporated in the PrivGenDB model. This enables PrivGenDB to handle the dataset containing both genotype and phenotype and also support storing and managing other metadata, like gender and ethnicity, privately. Furthermore, different queries, namely Count, Boolean, Negation and k′-out-of-k match queries used for genomic data analysis, are supported and executed by PrivGenDB. The execution of these queries on genomic data in PrivGenDB is efficient and scalable for biomedical research and services. These are demonstrated by our analytical and empirical analysis presented in this paper. Specifically, our empirical studies on a dataset with 5000 entries (records) containing 1000 SNPs demonstrate that a count/Boolean query and a k′-out-of-k match query over 40 SNPs take approximately 4.3s and 86.4μs, respectively, outperforming the existing schemes
Solar-driven alumina calcination for CO(2) mitigation and improved product quality
Accepted 10th May 2017We report on the first-of-a-kind experimental demonstration of the calcination of alumina with concentrated solar thermal (CST) radiation at radiative fluxes up to 2190 suns using a 5 kW novel solar transport reactor. Aluminium hydroxide was calcined at nominal reactor temperatures over the range 1160–1550 K to yield chemical conversions of up to 95.8% for nominal residence times of approximately 3 s. Solar energy conversion efficiencies of up to 20.4% were achieved. The mean pore diameter and specific surface area of the solar-generated alumina with the greatest chemical conversion were 5.8 nm and 132.7 m² g⁻¹, respectively, which are higher values than are typical for industrial alumina production. In addition, the product is dominated by the γ-phase, which is desirable for the downstream processing to aluminium. This suggests that CST can improve the quality of alumina over existing fossil fuel based processes though a combination of a high heating rate and avoided contamination by combustion products. Furthermore, the solar-driven process has the potential to avoid the discharge of combustion-derived CO₂ emissions for the calcination stage of the conventional Bayer process, which is typically 165 kg-CO₂ per tonne-alumina.Dominic Davis, Fabian Müller, Woei L. Saw, Aldo Steinfeld and Graham J. Natha
Cloud microphysical effects of turbulent mixing and entrainment
Turbulent mixing and entrainment at the boundary of a cloud is studied by
means of direct numerical simulations that couple the Eulerian description of
the turbulent velocity and water vapor fields with a Lagrangian ensemble of
cloud water droplets that can grow and shrink by condensation and evaporation,
respectively. The focus is on detailed analysis of the relaxation process of
the droplet ensemble during the entrainment of subsaturated air, in particular
the dependence on turbulence time scales, droplet number density, initial
droplet radius and particle inertia. We find that the droplet evolution during
the entrainment process is captured best by a phase relaxation time that is
based on the droplet number density with respect to the entire simulation
domain and the initial droplet radius. Even under conditions favoring
homogeneous mixing, the probability density function of supersaturation at
droplet locations exhibits initially strong negative skewness, consistent with
droplets near the cloud boundary being suddenly mixed into clear air, but
rapidly approaches a narrower, symmetric shape. The droplet size distribution,
which is initialized as perfectly monodisperse, broadens and also becomes
somewhat negatively skewed. Particle inertia and gravitational settling lead to
a more rapid initial evaporation, but ultimately only to slight depletion of
both tails of the droplet size distribution. The Reynolds number dependence of
the mixing process remained weak over the parameter range studied, most
probably due to the fact that the inhomogeneous mixing regime could not be
fully accessed when phase relaxation times based on global number density are
considered.Comment: 17 pages, 10 Postscript figures (figures 3,4,6,7,8 and 10 are in
reduced quality), to appear in Theoretical Computational Fluid Dynamic
- …