159 research outputs found

    Functional Data Analysis with Increasing Number of Projections

    Get PDF
    Functional principal components (FPC's) provide the most important and most extensively used tool for dimension reduction and inference for functional data. The selection of the number, d, of the FPC's to be used in a specific procedure has attracted a fair amount of attention, and a number of reasonably effective approaches exist. Intuitively, they assume that the functional data can be sufficiently well approximated by a projection onto a finite-dimensional subspace, and the error resulting from such an approximation does not impact the conclusions. This has been shown to be a very effective approach, but it is desirable to understand the behavior of many inferential procedures by considering the projections on subspaces spanned by an increasing number of the FPC's. Such an approach reflects more fully the infinite-dimensional nature of functional data, and allows to derive procedures which are fairly insensitive to the selection of d. This is accomplished by considering limits as d tends to infinity with the sample size. We propose a specific framework in which we let d tend to infinity by deriving a normal approximation for the two-parameter partial sum process of the scores \xi_{i,j} of the i-th function with respect to the j-th FPC. Our approximation can be used to derive statistics that use segments of observations and segments of the FPC's. We apply our general results to derive two inferential procedures for the mean function: a change-point test and a two-sample test. In addition to the asymptotic theory, the tests are assessed through a small simulation study and a data example

    The effects of compressible and incompressible states on the FIR-absorption of quantum wires and dots in a magnetic field

    Full text link
    We investigate the effects of compressible and incompressible states on the FIR-absorption of quantum wires and dots in a homogeneous perpendicular magnetic field. The electron-electron interaction is treated in the Hartree approximation at a finite low temperature. The calculated dispersion of the collective excitations reproduces several experimental results.Comment: To be published by Physica Scripta in the proceedings of the 17NSM. 6 pages in LaTeX + 6 postscript figure

    Reaction times of monitoring schemes for ARMA time series

    Get PDF
    This paper is concerned with deriving the limit distributions of stopping times devised to sequentially uncover structural breaks in the parameters of an autoregressive moving average, ARMA, time series. The stopping rules are defined as the first time lag for which detectors, based on CUSUMs and Page's CUSUMs for residuals, exceed the value of a prescribed threshold function. It is shown that the limit distributions crucially depend on a drift term induced by the underlying ARMA parameters. The precise form of the asymptotic is determined by an interplay between the location of the break point and the size of the change implied by the drift. The theoretical results are accompanied by a simulation study and applications to electroencephalography, EEG, and IBM data. The empirical results indicate a satisfactory behavior in finite samples

    Inelastic light scattering and the excited states of many-electron quantum dots

    Full text link
    A consistent calculation of resonant inelastic (Raman) scattering amplitudes for relatively large quantum dots, which takes account of valence-band mixing, discrete character of the spectrum in intermediate and final states, and interference effects, is presented. Raman peaks in charge and spin channels are compared with multipole strengths and with the density of energy levels in final states. A qualitative comparison with the available experimental results is given.Comment: 5 pages, accepted in J. Phys.: Condens. Matte

    Inelastic Coulomb scattering rates due to acoustic and optical plasmon modes in coupled quantum wires

    Full text link
    We report a theoretical study on the inelastic Coulomb scattering rate of an injected electron in two coupled quantum wires in quasi-one-dimensional doped semiconductors. Two peaks appear in the scattering spectrum due to the optical and the acoustic plasmon scattering in the system. We find that the scattering rate due to the optical plasmon mode is similar to that in a single wire but the acoustic plasmon scattering depends crucially on its dispersion relation at small qq. Furthermore, the effects of tunneling between the two wires are studied on the inelastic Coulomb scattering rate. We show that a weak tunneling can strongly affect the acoustic plasmon scattering.Comment: 6 Postscript figure

    Semiquantitative theory of electronic Raman scattering from medium-size quantum dots

    Full text link
    A consistent semiquantitative theoretical analysis of electronic Raman scattering from many-electron quantum dots under resonance excitation conditions has been performed. The theory is based on random-phase-approximation-like wave functions, with the Coulomb interactions treated exactly, and hole valence-band mixing accounted for within the Kohn-Luttinger Hamiltonian framework. The widths of intermediate and final states in the scattering process, although treated phenomenologically, play a significant role in the calculations, particularly for well above band gap excitation. The calculated polarized and unpolarized Raman spectra reveal a great complexity of features and details when the incident light energy is swept from below, through, and above the quantum dot band gap. Incoming and outgoing resonances dramatically modify the Raman intensities of the single particle, charge density, and spin density excitations. The theoretical results are presented in detail and discussed with regard to experimental observations.Comment: Submitted to Phys. Rev.

    Systematic study and uncertainty evaluation of P, T-odd molecular enhancement factors in BaF

    Get PDF
    A measurement of the magnitude of the electric dipole moment of the electron (eEDM) larger than that predicted by the Standard Model (SM) of particle physics is expected to have a huge impact on the search for physics beyond the SM. Polar diatomic molecules containing heavy elements experience enhanced sensitivity to parity (P) and time-reversal (T)-violating phenomena, such as the eEDM and the scalar-pseudoscalar (S-PS) interaction between the nucleons and the electrons, and are thus promising candidates for measurements. The NL-eEDM collaboration is preparing an experiment to measure the eEDM and S-PS interaction in a slow beam of cold BaF molecules [P. Aggarwal et al., Eur. Phys. J. D 72, 197 (2018)]. Accurate knowledge of the electronic structure parameters, Wd and Ws, connecting the eEDM and the S-PS interaction to the measurable energy shifts is crucial for the interpretation of these measurements. In this work, we use the finite field relativistic coupled cluster approach to calculate the Wd and Ws parameters in the ground state of the BaF molecule. Special attention was paid to providing a reliable theoretical uncertainty estimate based on investigations of the basis set, electron correlation, relativistic effects, and geometry. Our recommended values of the two parameters, including conservative uncertainty estimates, are 3.13 ±0.12×1024Hzecm for Wd and 8.29 ± 0.12 kHz for W

    Radioactive Holmium Acetylacetonate Microspheres for Interstitial Microbrachytherapy: An In Vitro and In Vivo Stability Study

    Get PDF
    Purpose The clinical application of holmium acetylacetonate microspheres (HoAcAcMS) for the intratumoral radionuclide treatment of solid malignancies requires a thorough understanding of their stability. Therefore, an in vitro and an in vivo stability study with HoAcAcMS was conducted. Methods HoAcAcMS, before and after neutron irradiation, were incubated in a phosphate buffer at 37°C for 6 months. The in vitro release of holmium in this buffer after 6 months was 0.5%. Elemental analysis, scanning electron microscopy, infrared spectroscopy and time of flight secondary ion mass spectrometry were performed on the HoAcAcMS. Results After 4 days in buffer the acetylacetonate ligands were replaced by phosphate, without altering the particle size and surface morphology. HoAcAcMS before and after neutron irradiation were administered intratumorally in VX2 tumor-bearing rabbits. No holmium was detected in the faeces, urine, femur and blood. Histological examination of the tumor revealed clusters of intact microspheres amidst necrotic tissue after 30 days. Conclusion HoAcAcMS are stable both in vitro and in vivo and are suitable for intratumoral radionuclide treatment.Radiation, Radionuclides and ReactorsApplied Science

    A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo

    Get PDF
    BACKGROUND: In search of a suitable GSH-depleting agent, a novel copper complex viz., copper N-(2-hydroxyacetophenone) glycinate (CuNG) has been synthesized, which was initially found to be a potential resistance modifying agent and later found to be an immunomodulator in mice model in different doses. The objective of the present work was to decipher the effect of CuNG on reactive oxygen species (ROS) generation and antioxidant enzymes in normal and doxorubicin-resistant Ehrlich ascites carcinoma (EAC/Dox)-bearing Swiss albino mice. METHODS: The effect of CuNG has been studied on ROS generation, multidrug resistance-associated protein1 (MRP1) expression and on activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). RESULTS: CuNG increased ROS generation and reduced MRP1 expression in EAC/Dox cells while only temporarily depleted glutathione (GSH) within 2 h in heart, kidney, liver and lung of EAC/Dox bearing mice, which were restored within 24 h. The level of liver Cu was observed to be inversely proportional to the level of GSH. Moreover, CuNG modulated SOD, CAT and GPx in different organs and thereby reduced oxidative stress. Thus nontoxic dose of CuNG may be utilized to reduce MRP1 expression and thus sensitize EAC/Dox cells to standard chemotherapy. Moreover, CuNG modulated SOD, CAT and and GPx activities to reduce oxidative stress in some vital organs of EAC/Dox bearing mice. CuNG treatment also helped to recover liver and renal function in EAC/Dox bearing mice. CONCLUSION: Based on our studies, we conclude that CuNG may be a promising candidate to sensitize drug resistant cancers in the clinic
    • …
    corecore