69 research outputs found
Sodium ((23)Na) ultra-short echo time imaging in the human brain using a 3D-Cones trajectory
Object: Sodium magnetic resonance imaging ((23)Na-MRI) of the brain has shown changes in (23)Na signal as a hallmark of various neurological diseases such as stroke, Alzheimer's disease, Multiple Sclerosis and Huntington's disease. To improve scan times and image quality, we have implemented the 3D-Cones (CN) sequence for in vivo (23)Na brain MRI.
Materials and Methods: Using signal-to-noise (SNR) as a
measurement of sequence performance, CN is compared
against more established 3D-radial k-space sampling
schemes featuring cylindrical stack-of-stars (SOS) and
3D-spokes kooshball (KB) trajectories, on five healthy
volunteers in a clinical setting. Resolution was evaluated by simulating the point-spread-functions (PSFs) and experimental measures on a phantom.
Results: All sequences were shown to have a similar SNR
arbitrary units (AU) of 6–6.5 in brain white matter, 7–9 in
gray matter and 17–18 AU in cerebrospinal fluid. SNR
between white and gray matter were significantly different
for KB and CN (p = 0.046 and\0.001 respectively), but
not for SOS (p = 0.1). Group mean standard deviations
were significantly smaller for CN (p = 0.016). Theoretical
full-width at half-maximum linewidth of the PSF for CN is
broadened by only 0.1, compared to 0.3 and 0.8 pixels for
SOS and KB respectively. Actual image resolution is
estimated as 8, 9 and 6.3 mm for SOS, KB and CN
respectively.
Conclusion: The CN sequence provides stronger tissue
contrast than both SOS and KB, with more reproducible
SNR measurements compared to KB. For CN, a higher true
resolution in the same amount of time with no significant
trade-off in SNR is achieved. CN is therefore more suitable
for 23Na-MRI in the brain
Sodium (Na) ultra-short echo time imaging in the human brain using a 3D-Cones trajectory
Object: Sodium magnetic resonance imaging (Na-MRI) of the brain has shown changes in Na signal as a hallmark of various neurological diseases such as stroke, Alzheimer's disease, Multiple Sclerosis and Huntington's disease. To improve scan times and image quality, we have implemented the 3D-Cones (CN) sequence for in vivo Na brain MRI. Materials and methods: Using signal-to-noise (SNR) as a measurement of sequence performance, CN is compared against more established 3D-radial k-space sampling schemes featuring cylindrical stack-of-stars (SOS) and 3D-spokes kooshball (KB) trajectories, on five healthy volunteers in a clinical setting. Resolution was evaluated by simulating the point-spread-functions (PSFs) and experimental measures on a phantom. Results: All sequences were shown to have a similar SNR arbitrary units (AU) of 6-6.5 in brain white matter, 7-9 in gray matter and 17-18 AU in cerebrospinal fluid. SNR between white and gray matter were significantly different for KB and CN (p = 0.046 and <0.001 respectively), but not for SOS (p = 0.1). Group mean standard deviations were significantly smaller for CN (p = 0.016). Theoretical full-width at half-maximum linewidth of the PSF for CN is broadened by only 0.1, compared to 0.3 and 0.8 pixels for SOS and KB respectively. Actual image resolution is estimated as 8, 9 and 6.3 mm for SOS, KB and CN respectively. Conclusion: The CN sequence provides stronger tissue contrast than both SOS and KB, with more reproducible SNR measurements compared to KB. For CN, a higher true resolution in the same amount of time with no significant trade-off in SNR is achieved. CN is therefore more suitable for Na-MRI in the brain. © 2013 The Author(s)
A novel multiparametric imaging approach to acute myocarditis using T2-mapping and CMR feature tracking
Background: The aim of this study was to evaluate the diagnostic potential of a novel cardiovascular magnetic resonance (CMR) based multiparametric imaging approach in suspected myocarditis and to compare it to traditional Lake Louise criteria (LLC). Methods: CMR data from 67 patients with suspected acute myocarditis were retrospectively analyzed. Seventeen age- and gender-matched healthy subjects served as control. T2-mapping data were acquired using a Gradient-Spin-Echo T2-mapping sequence in short-axis orientation. T2-maps were segmented according to the 16-segments AHA-model and segmental T2 values and pixel-standard deviation (SD) were recorded. Afterwards, the parameters maxT2 (the highest segmental T2 value) and madSD (the mean absolute deviation (MAD) of the pixel-SDs) were calculated for each subject. Cine sequences in three long axes and a stack of short-axis views covering the left and right ventricle were analyzed using a dedicated feature tracking algorithm. Results: A multiparametric imaging model containing madSD and LV global circumferential strain (GCSLV) resulted in the highest diagnostic performance in receiver operating curve analyses (area under the curve [AUC] 0.84) when compared to any model containing a single imaging parameter or to LLC (AUC 0.79). Adding late gadolinium enhancement (LGE) to the model resulted in a further increased diagnostic performance (AUC 0.93) and yielded the highest diagnostic sensitivity of 97% and specificity of 77%. Conclusions: A multiparametric CMR imaging model including the novel T2-mapping derived parameter madSD, the feature tracking derived strain parameter GCSLV and LGE yields superior diagnostic sensitivity in suspected acute myocarditis when compared to any imaging parameter alone and to LLC. © 2017 The Author(s)
Cardiovascular magnetic resonance feature tracking in pigs: a reproducibility and sample size calculation study
Cardiovascular magnetic resonance feature tracking (CMR-FT) is a novel technique for non-invasive assessment of myocardial motion and deformation. Although CMR-FT is standardized in humans, literature on comparative analysis from animal models is scarce. In this study, we measured the reproducibility of global strain under various inotropic states and the sample size needed to test its relative changes in pigs. Ten anesthetized healthy Landrace pigs were investigated. After baseline (BL), two further steps were performed: (I) dobutamine-induced hyper-contractility (Dob) and (II) verapamil-induced hypocontractility (Ver). Global longitudinal (GLS), circumferential (GCS) and radial strain (GRS) were assessed. This study shows a good to excellent inter- and intra-observer reproducibility of CMR-FT in pigs under various inotropic states. The highest inter-observer reproducibility was observed for GLS at both BL (ICC 0.88) and Ver (ICC 0.79). According to the sample size calculation for GLS, a small number of animals could be used for future trials
Estimation of total collagen volume: a T1 mapping versus histological comparison study in healthy Landrace pigs
Right ventricular biopsy represents the gold standard for the assessment of myocardial fibrosis and collagen content. This invasive technique, however, is accompanied by perioperative complications and poor reproducibility. Extracellular volume (ECV) measured through cardiovascular magnetic resonance (CMR) has emerged as a valid surrogate method to assess fibrosis non-invasively. Nonetheless, ECV provides an overestimation of collagen concentration since it also considers interstitial space. Our study aims to investigate the feasibility of estimating total collagen volume (TCV) through CMR by comparing it with the TCV measured at histology. Seven healthy Landrace pigs were acutely instrumented closed-chest and transported to the MRI facility for measurements. For each protocol, CMR imaging at 3T was acquired. MEDIS software was used to analyze T1 mapping and ECV for both the left ventricular myocardium (LVmyo) and left ventricular septum (LVseptum). ECV was then used to estimate TCVCMR at LVmyo and LVseptum following previously published formulas. Tissues were prepared following an established protocol and stained with picrosirius red to analyze the TCVhisto in LVmyo and LVseptum. TCV measured at LVmyo and LVseptum with both histology (8 ± 5 ml and 7 ± 3 ml, respectively) and T1-Mapping (9 ± 5 ml and 8 ± 6 ml, respectively) did not show any regional differences. TCVhisto and TCVCMR showed a good level of data agreement by Bland–Altman analysis. Estimation of TCV through CMR may be a promising way to non-invasively assess myocardial collagen content and may be useful to track disease progression or treatment response
Brief research report: Quantitative analysis of potential coronary microvascular disease in suspected long-COVID syndrome
BACKGROUND: Case series have reported persistent cardiopulmonary symptoms, often termed long-COVID or post-COVID syndrome, in more than half of patients recovering from Coronavirus Disease 19 (COVID-19). Recently, alterations in microvascular perfusion have been proposed as a possible pathomechanism in long-COVID syndrome. We examined whether microvascular perfusion, measured by quantitative stress perfusion cardiac magnetic resonance (CMR), is impaired in patients with persistent cardiac symptoms post-COVID-19. METHODS: Our population consisted of 33 patients post-COVID-19 examined in Berlin and London, 11 (33%) of which complained of persistent chest pain and 13 (39%) of dyspnea. The scan protocol included standard cardiac imaging and dual-sequence quantitative stress perfusion. Standard parameters were compared to 17 healthy controls from our institution. Quantitative perfusion was compared to published values of healthy controls. RESULTS: The stress myocardial blood flow (MBF) was significantly lower [31.8 ± 5.1 vs. 37.8 ± 6.0 (μl/g/beat), P < 0.001] and the T2 relaxation time was significantly higher (46.2 ± 3.6 vs. 42.7 ± 2.8 ms, P = 0.002) post-COVID-19 compared to healthy controls. Stress MBF and T1 and T2 relaxation times were not correlated to the COVID-19 severity (Spearman r = −0.302, −0.070, and −0.297, respectively) or the presence of symptoms. The stress MBF showed a U-shaped relation to time from PCR to CMR, no correlation to T1 relaxation time, and a negative correlation to T2 relaxation time (Pearson r = −0.446, P = 0.029). CONCLUSION: While we found a significantly reduced microvascular perfusion post-COVID-19 compared to healthy controls, this reduction was not related to symptoms or COVID-19 severity
Diagnostic performance of image navigated coronary CMR angiography in patients with coronary artery disease
Abstract Background The use of coronary MR angiography (CMRA) in patients with coronary artery disease (CAD) remains limited due to the long scan times, unpredictable and often non-diagnostic image quality secondary to respiratory motion artifacts. The purpose of this study was to evaluate CMRA with image-based respiratory navigation (iNAV CMRA) and compare it to gold standard invasive x-ray coronary angiography in patients with CAD. Methods Consecutive patients referred for CMR assessment were included to undergo iNAV CMRA on a 1.5 T scanner. Coronary vessel sharpness and a visual score were assigned to the coronary arteries. A diagnostic reading was performed on the iNAV CMRA data, where a lumen narrowing >50% was considered diseased. This was compared to invasive x-ray findings. Results Image-navigated CMRA was performed in 31 patients (77% male, 56 ± 14 years). The iNAV CMRA scan time was 7 min:21 s ± 0 min:28 s. Out of a possible 279 coronary segments, 26 segments were excluded from analysis due to stents or diameter less than 1.5 mm, resulting in a total of 253 coronary segments. Diagnostic image quality was obtained for 98% of proximal coronary segments, 94% of middle segments, and 91% of distal coronary segments. The sensitivity and specificity was 86% and 83% per patient, 80% and 92% per vessel and 73% and 95% per segment. Conclusion In this study, iNAV CMRA offered a very good diagnostic performance when compared against invasive x-ray angiography. Due to the short and predictable scan time it can add clinical value as a part of a comprehensive CAD assessment protocol
- …