6 research outputs found

    Gene x Gene Interactions Highlight the Role of Incretin Resistance for Insulin Secretion

    Get PDF
    Introduction: Genetic polymorphisms in TCF7L2 are the strongest common risk variants for type 2 diabetes mellitus (T2D). We and others have shown that genetic variation in TCF7L2 and WFS1 affect incretin-stimulated insulin secretion. A recent genome-wide association study discovered genetic variants associated with incretin levels. We hypothesized that these SNPs (single nucleotide polymorphisms) interact with the well-known TCF7L2 variant rs7903146 on insulin secretion due to their incretin altering effect.Methods: In this retrospective analysis, we used data from the cross-sectional TUEF-cohort (n = 2929) and a hyperglycemic clamp study using additional GLP-1 infusion at the end of the clamp (n = 76). Insulin secretion was measured by evaluating OGTT-derived indexes of insulin secretion and insulin/C-peptide levels during clamp. We genotyped rs7903146 in TCF7L2, rs10010131 in WFS1, and six SNPs associated with GLP-1 and GIP levels.Results: One of the six incretin-associated SNPs, rs17681684 in GLP2R, exhibited significant SNP x SNP interactions with rs7903146 in TCF7L2 on insulin secretion (p = 0.0024) after correction for multiple testing. Three further SNP‘s showed nominally significant interactions (p < 0.05). In the hyperglycemic clamp study, rs7903146 in TCF7L2 also interacted with rs17681684 on AUC C-peptide during the GLP-1 stimulation phase, thereby replicating the above finding.Conclusion: The findings exemplify the role of SNP x SNP interactions in the genetics of type 2 diabetes mellitus and corroborate the existence of clinically relevant differences in incretin sensitivity

    Androgen receptor overexpression in prostate cancer in type 2 diabetes

    No full text
    Objective: While prostate cancer does not occur more often in men with diabetes, survival is markedly reduced in this patient group. Androgen signaling is a known and major driver for prostate cancer progression. Therefore, we analyzed major components of the androgen signaling chain and cell proliferation in relation to type 2 diabetes. Methods: Tumor content of 70 prostate tissue samples of men with type 2 diabetes and 59 samples of patients without diabetes was quantified by an experienced pathologist, and a subset of 51 samples was immunohistochemically stained for androgen receptor (AR). mRNA expression of AR, insulin receptor isoform A (IR-A) and B (IR-B), IGF-1 receptor (IGF1R), Cyp27A1 and Cyp7B1, PSA gene KLK3, PSMA gene FOLH1, Ki-67 gene MKI67, and estrogen receptor beta (ESR2) were analyzed by RT-qPCR. Results: AR mRNA and protein expression were associated with the tumor content only in men with diabetes. AR expression also correlated with downstream targets PSA (KLK3) and PSMA (FOLH1) and increased cell proliferation. Only in diabetes, AR expression was correlated to higher IR-A/IR-B ratio and lower IR-B/IGF1R ratio, thus, in favor of the mitogenic isoforms. Reduced Cyp27A1 and increased Cyp7B1 expressions in tumor suggest lower levels of protective estrogen receptor ligands in diabetes. Conclusions: We report elevated androgen receptor signaling and activity presumably due to altered insulin/IGF-1 receptors and decreased levels of protective estrogen receptor ligands in prostate cancer in men with diabetes. Our results reveal new insights why these patients have a worse prognosis. These findings provide the basis for future clinical trials to investigate treatment response in patients with prostate cancer and diabetes. Keywords: Prostate cancer, Androgen receptor, Insulin receptor, IGF-1 receptor, Cyp27A1, Cyp7B

    Transverse momentum spectra of charged particles in proton–proton collisions at √s=900 GeV with ALICE at the LHC

    No full text
    The inclusive charged particle transverse momentum distribution is measured in proton–proton collisions at s=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15<pT<10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for |η|<0.8 is 〈pT〉INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and 〈pT〉NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger 〈pT〉 than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET
    corecore