6 research outputs found

    Defective phages of bacillus subtilis

    No full text
    Applied Science

    Pyruvate Metabolism in Saccharomyces cerevisiae

    No full text

    Orthogonal-field-alternation gel electrophoresis banding patterns of DNA from yeasts

    No full text
    Chromosomal DNAs from various yeast species were separated by orthogonal-field-alternation gel electrophoresis (OFAGE). To this end we developed a spheroplasting and lysis method to obtain intact DNA from both ascomycetous and basidiomycetous yeasts. The OFAGE banding patterns of22 ascomycetous and four basidiomycetous yeast strains were compared. The strains represented species from the genera: Brettanomyces, Candida, Cryptococcus, Filohasidiella, Geotrichum, Hansenula, Kluyveromyces, Pachysolen, Pichia, Rhodosporidium, Rhodotorula, Saccharomyces, Saccharomycodes, Saccharomycopsis, Schizosaccharomyces and Zygosaccharomyces. Variations occurred in the number of bands and their positions in the gel, not only among strains of different genera but also among species from the same genus and even between varieties of the same species. The ascomycetous yeasts, with the exception of Saccharomyces cerevisiae, only showed one to five bands of DNA larger than 1000 kilobase pairs (kb) in general none smaller. The patterns of the four basidiomycetous yeasts revealed also a few large DNA bands but in addition one to six bands ranging in size from 500 to 1000 kb, with the exception of a single smaller chromosome in hodotorula mucilaginosa. From the OFAGE banding patterns of strains studied here it appears that in Sacch. cerevisiae the partitioning of DNA over chromosomes is unique. But rather than the large number of chromosomes, the presence of four chromosomes with less than 500 kb of DNA is characteristic for Sacch. cerevisiae.Applied Science
    corecore