3 research outputs found

    Sea surface temperature dictates movement and habitat connectivity of Atlantic cod in a coastal fjord system

    Get PDF
    While movements of organisms have been studied across a myriad of environments, information is often lacking regarding spatio‐seasonal patterning in complex temperate coastal systems. Highly mobile fish form an integral part of marine food webs providing linkages within and among habitats, between patches of habitats, and at different life stages. We investigated how movement, activity, and connectivity patterns of Atlantic cod (Gadus morhua) are influenced by dynamic environmental conditions. Movement patterns of 39 juvenile and subadult Atlantic cod were assessed in two coastal sites in the Swedish Skagerrak for 5 months. We used passive acoustic telemetry and network analysis to assess seasonal and spatial movement patterns of cod and their relationships to different environmental factors, using statistical correlations, analysis of recurrent spatial motifs, and generalized linear mixed models. Temperature, in combination with physical barriers, precludes significant connectivity (complex motifs) within the system. Sea surface temperature had a strong influence on connectivity (node strength, degree, and motif frequency), where changes from warmer summer waters to colder winter waters significantly reduced movement activity of fish. As the seasons changed, movement of fish gradually decreased from large‐scale (km) linkages in the summer to more localized movement patterns in the winter (limited to 100s m). Certain localized areas, however, were identified as important for connectivity throughout the whole study period, likely due to these multiple‐habitat areas fulfilling functions required for foraging and shelter. This study provides new knowledge regarding inshore movement dynamics of juvenile and subadult Atlantic cod that use complex, coastal fjord systems. The findings show that connectivity, seasonal patterns in particular, should be carefully considered when selecting conservation areas to promote marine stewardship

    Local habitat and seascape structure influence seagrass fish assemblages in the Venice lagoon: the value of conservation at multiple spatial scales.

    Full text link
    Seagrass meadows are a critical component of estuarine and coastal seascapes, and their structure influences fish assemblages at multiple spatial scales. The patch mosaic mode l, which defines the seascape as a collection of interacting habitat types, is increasingly dopted to prioritise protected areas and design ecological restoration schemes, hence helping to preserve seagrass meadows and the associated fish assemblages. Despite that, the re are few studies investigating the relative contribution of environmental characteristics measured at different spatial scales in determining the distribution of seagrass fish. This study collects fish and environmental observations taken at both site and seascape scales in seagrass meadows in the Venice lagoon (Adriatic Sea, Italy). By means of generalised linear models, it aims to disentangle the relative influence of local water qua lity and habitat characteristics from that of habitat mosaic properties, investigating the response of whole fish assemblage descriptors, feeding guilds and dominant species. While confirming the primary importance of local habitat quality , the study highlights that also seagrass habitat structure at the seascape scale is relevant for seagrass fish assemblages, influencing total biomass, biomass of macrobenthivorous and hyperbenthivorous/piscivorous species and seagrass specialists such as syngnathids. Conservation of seagrass fish assemblages can therefore be promoted in Mediterranean coastal lagoons by preserving or restoring some features of the habitat mosaic, namely the extension of seagrass patches and their shape complexity, in addition to local water quality and seagrass cover
    corecore