137 research outputs found
Computing and deflating eigenvalues while solving multiple right hand side linear systems in Quantum Chromodynamics
We present a new algorithm that computes eigenvalues and eigenvectors of a
Hermitian positive definite matrix while solving a linear system of equations
with Conjugate Gradient (CG). Traditionally, all the CG iteration vectors could
be saved and recombined through the eigenvectors of the tridiagonal projection
matrix, which is equivalent theoretically to unrestarted Lanczos. Our algorithm
capitalizes on the iteration vectors produced by CG to update only a small
window of vectors that approximate the eigenvectors. While this window is
restarted in a locally optimal way, the CG algorithm for the linear system is
unaffected. Yet, in all our experiments, this small window converges to the
required eigenvectors at a rate identical to unrestarted Lanczos. After the
solution of the linear system, eigenvectors that have not accurately converged
can be improved in an incremental fashion by solving additional linear systems.
In this case, eigenvectors identified in earlier systems can be used to
deflate, and thus accelerate, the convergence of subsequent systems. We have
used this algorithm with excellent results in lattice QCD applications, where
hundreds of right hand sides may be needed. Specifically, about 70 eigenvectors
are obtained to full accuracy after solving 24 right hand sides. Deflating
these from the large number of subsequent right hand sides removes the dreaded
critical slowdown, where the conditioning of the matrix increases as the quark
mass reaches a critical value. Our experiments show almost a constant number of
iterations for our method, regardless of quark mass, and speedups of 8 over
original CG for light quark masses.Comment: 22 pages, 26 eps figure
The impact of investor horizon on say-on-pay voting
Shareholder investment horizons have a significant impact on say-on-pay voting patterns. Short-term investors are more likely to avoid expressing opinion on executive pay proposals by casting an abstaining vote. They vote against board proposals on pay only in cases where the CEO already receives excessive pay levels. In contrast, long-term investors typically cast favourable votes. According to our findings, this is due to effective monitoring rather than collusion with the management. Overall, investor heterogeneity in terms of investment horizons helps explain say-on-pay voting, in particular the low levels of say-on-pay dissent, which have recently raised questions over the efficiency of this corporate governance mechanism
Μελέτη Σταθεροποίησης Πηλοκονιαμάτων
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Επιστήμη και Τεχνολογία Υλικών
Overpayment, Financial Distress, and Investor Horizons
Firms that follow excessive payout policies (over-payers) have significantly higher financial distress risk and lower survival compared to under-payers, consistent with risk-shifting from shareholders to creditors in distressed firms. All else equal, the presence of institutional investors with long-term investment horizons in a firm is associated with overpayment. A transition analysis indicates the existence of a reciprocal relation between overpayment and financial distress, highlighting the feedback effects between overpayment and distress. In addition, over-payers endure smaller future sales and assets growth, and experience a significant future increase in the overall riskiness of their assets, compared to under-payers
Sweet cherry:composition, postharvest preservation, processing and trends for its future use
Background Sweet cherries (Prunus avium L.) are a nutritious fruit which are rich in polyphenols and have high antioxidant potential. Most sweet cherries are consumed fresh and a small proportion of the total sweet cherries production is value added to make processed food products. Sweet cherries are highly perishable fruit with a short harvest season, therefore extensive preservation and processing methods have been developed for the extension of their shelf-life and distribution of their products. Scope and Approach In this review, the main physicochemical properties of sweet cherries, as well as bioactive components and their determination methods are described. The study emphasises the recent progress of postharvest technology, such as controlled/modified atmosphere storage, edible coatings, irradiation, and biological control agents, to maintain sweet cherries for the fresh market. Valorisations of second-grade sweet cherries, as well as trends for the diversification of cherry products for future studies are also discussed. Key Findings and Conclusions Sweet cherry fruit have a short harvest period and marketing window. The major loss in quality after harvest include moisture loss, softening, decay and stem browning. Without compromising their eating quality, the extension in fruit quality and shelf-life for sweet cherries is feasible by means of combination of good handling practice and applications of appropriate postharvest technology. With the drive of health-food sector, the potential of using second class cherries including cherry stems as a source of bioactive compound extraction is high, as cherry fruit is well-known for being rich in health-promoting components
Encapsulation of citrus by-product extracts by spray-drying and freeze-drying using combinations of maltodextrin with soybean protein and ι-carrageenan
The effect of different combinations of maltodextrin (MD) coating agents (MD, MD + soybean protein, and MD + ι-carrageenan) on the encapsulation of lemon by-product aqueous extracts using freeze-drying and spray-drying were investigated. The total phenolic content (TPC), total flavonoid content (TFC), and ferric ion reducing antioxidant power (FRAP) of the microparticles were evaluated. Freeze-drying with the mixture of MD + soybean protein resulted in the highest retention of TPC, TFC, and FRAP (1.66 ± 0.02 mg GAE/g d.b., 0.43 ± 0.02 mg CE/g d.b., and 3.70 ± 0.05 mM TE/g, respectively). Freeze-drying resulted in microparticles with lower moisture content (MC) and water activity (aw) than those produced by spray-drying. Specifically, the MC and aw of the microparticles produced by freeze-drying ranged from 1.15 to 2.15% and 0.13 to 0.14, respectively, while the MC and aw of the microparticles produced by spray-drying ranged from 6.06% to 6.60% and 0.33 to 0.40, respectively. Scanning electron microscopy revealed that spray-drying resulted in the formation of spherical particles of different sizes regardless of the type of coating agent. Although freeze-drying resulted in microparticles with amorphous glassy shapes, the mixture of MD + soybean protein resulted in the formation of spherical porous particles. X-ray diffraction revealed a low degree of crystallinity for the samples produced by both techniques.</p
A new microfluidic pressure-controlled Field Effect Transistor (pFET) in digital fluidic switch operation mode
Lab-on-Chip is currently considered the technology with the potential to revolutionize future biochemical analysis providing miniaturized, low-reagent volume microchips as an alternative to traditional benchtop analysis. Automated control of droplet flow is currently a key objective in microfluidics research, aiming for droplet logic microfluidic circuits. To this end, microfluidic research has been following the electronics paradigm, with several digital fluidic components being demonstrated towards the realization of digital fluidic circuits for automated liquid control and delivery. In this work, we introduce a new concept of microfluidic pressure controlled field-effect transistors (pFETs), towards droplet logic operations. Using a fluidic with porous and hydrophobic walls, the inherently pinned plug depins by pressure application through the porous wall (backpressure), thus enabling the actuation and the downward transportation of the plug due the action of gravity. This concept resembles the logic operation of a metal–oxide–semiconductor field-effect transistor (MOSFET). The pFET operating parameters are thus defined in a manner analogous to MOSFET digital switches and their dependence on the channel width is studied also for the first time. The successful operation of pFET devices for droplet logic operation is verified in continuous ON/OFF cycles, achieving OFF-ON and ON-OFF switching times under 1 s (0.864 s and 0.841 s respectively) and therefore promising rapid liquid switching times, comparable to electronic circuit ones
Impact of different solvents on the recovery of bioactive compounds and antioxidant properties from lemon (Citrus limon L.) pomace waste
The effects of different solvents on the recovery of (i) extractable solids (ES), (ii) total phenolic compounds (TPC), (iii) total flavonoid content (TFC), (iv) vitamin C, and (v) antioxidant activity from lemon pomace waste were investigated. The results revealed that solvents significantly affected the recovery of ES, TPC, TFC, and antioxidant properties. Absolute methanol and 50% acetone resulted in the highest extraction yields of TPC, whereas absolute methanol resulted in the highest extraction of TFC, and water had the highest recovery of vitamin C. 50% ethanol, and 50% acetone had higher extraction yields for TPC, and TFC, as well as higher antioxidant activity compared with their absolute solvents and water. TPC and TFC were shown to be the major components contributing to the antioxidant activity of lemon pomace
Optimizing a sustainable ultrasound assisted extraction method for the recovery of polyphenols from lemon by-products:comparison with hot water and organic solvent extractions
Response surface methodology (RSM) based on a three-factor and three-level Box–Behnken design was employed for optimizing the aqueous ultrasound-assisted extraction (AUAE) conditions, including extraction time (35–45 min), extraction temperature (45–55 °C) and ultrasonic power (150–250 W), for the recovery of total phenolic content (TPC) and rutin from lemon by-products. The independent variables and their values were selected on the basis of preliminary experiments, where the effects of five extraction parameters (particle size, extraction time and temperature, ultrasonic power and sample-to-solvent ratio) on TPC and rutin extraction yields were investigated. The yields of TPC and rutin were studied using a second-order polynomial equation. The optimum AUAE conditions for TPC were extraction time of 45 min, extraction temperature of 50 °C and ultrasonic power of 250 W with a predicted value of 18.10 ± 0.24 mg GAE/g dw, while the optimum AUAE conditions for rutin were extraction time of 35 min, extraction temperature of 48 °C and ultrasonic power of 150W with a predicted value of 3.20 ± 0.12 mg/g dw. The extracts obtained at the optimum AUAE conditions were compared with those obtained by a hot water and an organic solvent conventional extraction in terms of TPC, total flavonoid content (TF) and antioxidant capacity. The extracts obtained by AUAE had the same TPC, TF and ferric reducing antioxidant power as those achieved by organic solvent conventional extraction. However, hot water extraction led to extracts with the highest flavonoid content and antioxidant capacity. Scanning electron microscopy analysis showed that all the extraction methods led to cell damage to varying extents
- …