10 research outputs found
Divergent polarization mechanisms during vertebrate epithelial development mediated by the Crumbs complex protein Nagie oko
The zebrafish MAGUK protein Nagie oko is a member of the evolutionarily conserved Crumbs protein complex and functions as a scaffolding protein involved in the stabilization of multi-protein assemblies at the tight junction. During zebrafish embryogenesis, mutations in nagie oko cause defects in both epithelial polarity and cardiac morphogenesis. We used deletion constructs of Nagie oko in functional rescue experiments to define domains essential for cell polarity, maintenance of epithelial integrity and cardiac morphogenesis. Inability of Nagie oko to interact with Crumbs proteins upon deletion of the PDZ domain recreates all aspects of the nagie oko mutant phenotype. Consistent with this observation, apical localization of Nagie oko within the myocardium and neural tube is dependent on Oko meduzy/Crumbs2a. Disruption of direct interactions with Patj or Lin-7, two other members of the Crumbs protein complex, via the bipartite L27 domains produces only partial nagie oko mutant phenotypes and does not impair correct junctional localization of the truncated Nagie oko deletion protein within myocardial cells. Similarly, loss of the evolutionarily conserved region 1 domain, which mediates binding to Par6, causes only a subset of the nagie oko mutant epithelial phenotypes. Finally, deletion of the C-terminus, including the entire guanylate kinase and the SH3 domains, renders the truncated Nagie oko protein inactive and recreates all features of the nagie oko mutant phenotype when tested in functional complementation assays. Our observations reveal a previously unknown diversity of alternative multi-protein assembly compositions of the Crumbs-Nagie-oko and Par6-aPKC protein complexes that are highly dependent on the developmental context
Mutations affecting craniofacial development in zebrafish
In a large-scale screen for mutations affecting embryogenesis in zebrafish, we identified 48 mutations in 34 genetic loci specifically affecting craniofacial development. Mutants were analyzed for abnormalities in the cartilaginous head skeleton. Further, the expression of marker genes was studied to investigate potential abnormalities in mutant rhombencephalon, neural crest, and pharyngeal endoderm. The results suggest that the identified mutations affect three distinct aspects of craniofacial development. In one group, mutations affect the overall pattern of the craniofacial skeleton, suggesting that the genes are involved in the specification of these elements. Another large group of mutations affects differentiation and morphogenesis of cartilage, and may provide insight into the genetic control of chondrogenesis. The last group of mutations leads to the abnormal arrangement of skeletal elements and may uncover important tissue-tissue interactions underlying jaw development
Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis
BACKGROUND: The Par-3/Par-6/aPKC complex is a key regulator of cell polarity in a number of systems. In Drosophila, this complex acts at the zonula adherens (adherens junctions) to establish epithelial polarity and helps to orient the mitotic spindle during asymmetric neuroblast divisions. In MDCKII cells, this complex localizes to the zonula occludens (tight junctions) and appears to regulate epithelial polarity. However, the in vivo role of this complex during vertebrate embryogenesis is not known, due to the lack of relevant mutations. RESULTS: We have positionally cloned the zebrafish heart and soul (has) mutation, which affects the morphogenesis of several embryonic tissues, and show that it encodes atypical protein kinase C lambda (aPKC lambda). We find that loss of aPKC lambda affects the formation and maintenance of the zonula adherens in the polarized epithelia of the retina, neural tube, and digestive tract, leading to novel phenotypes, such as the formation of multiple lumens in the developing intestine. In addition, has mutants display defects in gut looping and endodermal organ morphogenesis that appear to be independent of the defects in epithelial polarity. Finally, we show that loss of aPKC lambda leads to defects in spindle orientation during progenitor cell divisions in the neural retina. CONCLUSIONS: Our results show that aPKC lambda is required for the formation and maintenance of the zonula adherens during early epithelial development in vertebrates and demonstrate a previously undescribed yet critical role for this protein in organ morphogenesis. Furthermore, our studies identify the first genetic locus regulating the orientation of cell division in vertebrates
Mutations affecting development of the zebrafish ear
In a large scale screen for genetic defects in zebrafish embryogenesis we identified mutations affecting several aspects of ear development, including: specification of the otic placode, growth of the otic vesicle (otocyst), otolith formation, morphogenesis of the semicircular canals and differentiation of the otic capsule. Here we report initial phenotypic and genetic characterization of 20 of these mutations defining 13 independent loci. Embryos mutant at the quadro locus display abnormal specification of the otic placode. As revealed by dlx-3 expression, the otic field in the mutant embryos is smaller or split into two fields. At later stages of development the ear of quadro mutants is frequently divided into two smaller, incomplete units. Four loci affect ear shape shortly after formation of the otic vesicle. All of them also display abnormal brain morphology. Mutations in five loci result in the absence of otolith formation; two of these also produce changes of ear morphology. Two loci, little richard and golas, affect morphology of the otic vesicle shortly before formation of the semicircular canals. In both cases the morphogenesis of the semicircular canals is disrupted. Finally, the antytalent locus is involved in late expansion of the ear structure. Analysis of mutations presented here will strengthen our understanding of vertebrate ear morphogenesis and provide novel entry points to its genetic analysis
Hematopoietic mutations in the zebrafish
We have identified mutations that perturb the formation or differentiation of the first embryonic blood cells in the zebrafish embryo. These 'primitive' red blood cells originate in the intermediate cell mass of the trunk, a derivative of the dorsal lateral plate mesoderm. By transfusion of blood between embryos we demonstrate that this cohort of cells provides the embryo with all, or nearly all, of its blood cells until at least day 5 postfertilization. Larval lethal mutations generated by ENU mutagenesis affect different steps in the development of these cells. Some cause defects in precursor generation, others defects in differentiation, and others an increase in cellular photosensitivity
Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis
Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity