162 research outputs found
Lightning Hazards to Aircraft Fuel Tanks
The hazards of lightning strokes to aircraft fuel tanks have been investigated in artificial-lightning-generation facilities specifically constructed to duplicate closely the natural lightning discharges to air craft determined through flight research programs and analysis of lightning-damaged aircraft over a period of many years. Explosion studies were made in an environmental explosion chamber using small fuel tanks under various simulated flight conditions. The results showed that there is a primary hazard whenever there is direct puncture of the fuel-tank wall, whereas the ignition of fuel by hot spots on tank walls due to lightning strikes is unlikely. Punctures of fuel-tank walls by artificial-lightning discharges produced explosions of the fuel in the mixture range from excessively lean to rich mixtures. None of the aluminum alloys, 0.081 inch thick or over, were punctured by the laboratory discharges representative of natural-lightning discharges to aircraft; however, reliance on this wall thickness for complete protection would not be justified, because occasional strokes are known to be of greater magnitude and because statistics reveal variations in the damage pattern. Data gathered by the Lightning and Transients Research Institute on lightning strokes to aircraft show that 90 percent of the strokes recorded have occurred in the temperature range of -10 to +10 C, where many of the jet fuels are flammable but where aviation gasoline is overrich. Also, 10 percent of the strokes recorded have been to the wings, which are the principal fuel-storage areas for modern aircraft. Thus, there is a hazard, particularly for jet fuels. Certain protective measures are indicated by the studies to date, such as the use of lightning diverter rods, thickening of the wing skin in areas near the most probable stroke paths, and the use of fuel-tank liners in critical areas
Nitric Oxide-Induced Activation of the AMP-Activated Protein Kinase α2 Subunit Attenuates IκB Kinase Activity and Inflammatory Responses in Endothelial Cells
BACKGROUND: In endothelial cells, activation of the AMP-activated protein kinase (AMPK) has been linked with anti-inflammatory actions but the events downstream of kinase activation are not well understood. Here, we addressed the effects of AMPK activation/deletion on the activation of NFκB and determined whether the AMPK could contribute to the anti-inflammatory actions of nitric oxide (NO). METHODOLOGY/PRINCIPAL FINDINGS: Overexpression of a dominant negative AMPKα2 mutant in tumor necrosis factor-α-stimulated human endothelial cells resulted in increased NFκB activity, E-selectin expression and monocyte adhesion. In endothelial cells from AMPKα2(-/-) mice the interleukin (IL)-1β induced expression of E-selectin was significantly increased. DETA-NO activated the AMPK and attenuated NFκB activation/E-selectin expression, effects not observed in human endothelial cells in the presence of the dominant negative AMPK, or in endothelial cells from AMPKα2(-/-) mice. Mechanistically, overexpression of constitutively active AMPK decreased the phosphorylation of IκB and p65, indicating a link between AMPK and the IκB kinase (IKK). Indeed, IKK (more specifically residues Ser177 and Ser181) was found to be a direct substrate of AMPKα2 in vitro. The hyper-phosphorylation of the IKK, which is known to result in its inhibition, was also apparent in endothelial cells from AMPKα2(+/+) versus AMPKα2(-/-) mice. CONCLUSIONS: These results demonstrate that the IKK is a direct substrate of AMPKα2 and that its phosphorylation on Ser177 and Ser181 results in the inhibition of the kinase and decreased NFκB activation. Moreover, as NO potently activates AMPK in endothelial cells, a portion of the anti-inflammatory effects of NO are mediated by AMPK
Proportion and characteristics of secondary progressive multiple sclerosis in five European registries using objective classifiers
Background: To assign a course of secondary progressive multiple sclerosis (MS) (SPMS) may be difficult and the proportion of persons with SPMS varies between reports. An objective method for disease course classification may give a better estimation of the relative proportions of relapsing-remitting MS (RRMS) and SPMS and may identify situations where SPMS is under reported.Materials and methods: Data were obtained for 61,900 MS patients from MS registries in the Czech Republic, Denmark, Germany, Sweden, and the United Kingdom (UK), including date of birth, sex, SP conversion year, visits with an Expanded Disability Status Scale (EDSS) score, MS onset and diagnosis date, relapses, and disease-modifying treatment (DMT) use. We included RRMS or SPMS patients with at least one visit between January 2017 and December 2019 if ≥ 18 years of age. We applied three objective methods: A set of SPMS clinical trial inclusion criteria ("EXPAND criteria") modified for a real-world evidence setting, a modified version of the MSBase algorithm, and a decision tree-based algorithm recently published.Results: The clinically assigned proportion of SPMS varied from 8.7% (Czechia) to 34.3% (UK). Objective classifiers estimated the proportion of SPMS from 15.1% (Germany by the EXPAND criteria) to 58.0% (UK by the decision tree method). Due to different requirements of number of EDSS scores, classifiers varied in the proportion they were able to classify; from 18% (UK by the MSBase algorithm) to 100% (the decision tree algorithm for all registries). Objectively classified SPMS patients were older, converted to SPMS later, had higher EDSS at index date and higher EDSS at conversion. More objectively classified SPMS were on DMTs compared to the clinically assigned.Conclusion: SPMS appears to be systematically underdiagnosed in MS registries. Reclassified patients were more commonly on DMTs.</p
AMP-activated protein kinase - not just an energy sensor
Orthologues of AMP-activated protein kinase (AMPK) occur in essentially all eukaryotes as heterotrimeric complexes comprising catalytic α subunits and regulatory β and γ subunits. The canonical role of AMPK is as an energy sensor, monitoring levels of the nucleotides AMP, ADP, and ATP that bind competitively to the γ subunit. Once activated, AMPK acts to restore energy homeostasis by switching on alternate ATP-generating catabolic pathways while switching off ATP-consuming anabolic pathways. However, its ancestral role in unicellular eukaryotes may have been in sensing of glucose rather than energy. In this article, we discuss a few interesting recent developments in the AMPK field. Firstly, we review recent findings on the canonical pathway by which AMPK is regulated by adenine nucleotides. Secondly, AMPK is now known to be activated in mammalian cells by glucose starvation by a mechanism that occurs in the absence of changes in adenine nucleotides, involving the formation of complexes with Axin and LKB1 on the surface of the lysosome. Thirdly, in addition to containing the nucleotide-binding sites on the γ subunits, AMPK heterotrimers contain a site for binding of allosteric activators termed the allosteric drug and metabolite (ADaM) site. A large number of synthetic activators, some of which show promise as hypoglycaemic agents in pre-clinical studies, have now been shown to bind there. Fourthly, some kinase inhibitors paradoxically activate AMPK, including one (SU6656) that binds in the catalytic site. Finally, although downstream targets originally identified for AMPK were mainly concerned with metabolism, recently identified targets have roles in such diverse areas as mitochondrial fission, integrity of epithelial cell layers, and angiogenesis
Prostaglandin E2 Promotes Endothelial Differentiation from Bone Marrow-Derived Cells through AMPK Activation
Prostaglandin E2 (PGE2) has been reported to modulate angiogenesis, the process of new blood vessel formation, by promoting proliferation, migration and tube formation of endothelial cells. Endothelial progenitor cells are known as a subset of circulating bone marrow mononuclear cells that have the capacity to differentiate into endothelial cells. However, the mechanism underlying the stimulatory effects of PGE2 and its specific receptors on bone marrow-derived cells (BMCs) in angiogenesis has not been fully characterized. Treatment with PGE2 significantly increased the differentiation and migration of BMCs. Also, the markers of differentiation to endothelial cells, CD31 and von Willebrand factor, and the genes associated with migration, matrix metalloproteinases 2 and 9, were significantly upregulated. This upregulation was abolished by dominant-negative AMP-activated protein kinase (AMPK) and AMPK inhibitor but not protein kinase, a inhibitor. As a functional consequence of differentiation and migration, the tube formation of BMCs was reinforced. Along with altered BMCs functions, phosphorylation and activation of AMPK and endothelial nitric oxide synthase, the target of activated AMPK, were both increased which could be blocked by EP4 blocking peptide and simulated by the agonist of EP4 but not EP1, EP2 or EP3. The pro-angiogenic role of PGE2 could be repressed by EP4 blocking peptide and retarded in EP4+/− mice. Therefore, by promoting the differentiation and migration of BMCs, PGE2 reinforced their neovascularization by binding to the receptor of EP4 in an AMPK-dependent manner. PGE2 may have clinical value in ischemic heart disease
Activation of the AMP-Activated Protein Kinase by Eicosapentaenoic Acid (EPA, 20:5 n-3) Improves Endothelial Function In Vivo
The aim of the present study was to test the hypothesis that the cardiovascular-protective effects of eicosapentaenoic acid (EPA) may be due, in part, to its ability to stimulate the AMP-activated protein kinase (AMPK)-induced endothelial nitric oxide synthase (eNOS) activation. The role of AMPK in EPA-induced eNOS phosphorylation was investigated in bovine aortic endothelial cells (BAEC), in mice deficient of either AMPKα1 or AMPKα2, in eNOS knockout (KO) mice, or in Apo-E/AMPKα1 dual KO mice. EPA-treatment of BAEC increased both AMPK-Thr172 phosphorylation and AMPK activity, which was accompanied by increased eNOS phosphorylation, NO release, and upregulation of mitochondrial uncoupling protein-2 (UCP-2). Pharmacologic or genetic inhibition of AMPK abolished EPA-enhanced NO release and eNOS phosphorylation in HUVEC. This effect of EPA was absent in the aortas isolated from either eNOS KO mice or AMPKα1 KO mice fed a high-fat, high-cholesterol (HFHC) diet. EPA via upregulation of UCP-2 activates AMPKα1 resulting in increased eNOS phosphorylation and consequent improvement of endothelial function in vivo
Multiple sclerosis registries in Europe – An updated mapping survey
Highlights
Nineteen questionnaires from European MS registries were analysed.
Aim and focus as well as number of patients and inclusion criteria vary considerably.
Most of the MS registries collect data within common general categories.
There are more pronounced differences regarding specific subcategories
LKB1 and AMPK and the cancer-metabolism link - ten years after
The identification of a complex containing the tumor suppressor LKB1 as the critical upstream kinase required for the activation of AMP-activated protein kinase (AMPK) by metabolic stress was reported in an article in Journal of Biology in 2003. This finding represented the first clear link between AMPK and cancer. Here we briefly discuss how this discovery came about, and describe some of the insights, especially into the role of AMPK in cancer, that have followed from it. In September 2003, our groups published a joint paper [1] in Journal of Biology (now BMC Biology) that identified the long-sought and elusive upstream kinase acting on AMP-activated protein kinase (AMPK) as a complex containing LKB1, a known tumor suppressor. Similar findings were reported at about the same time by David Carling and Marian Carlson [2] and by Reuben Shaw and Lew Cantley [3]; at the time of writing these three papers have received between them a total of over 2,000 citations. These findings provided a direct link between a protein kinase, AMPK, which at the time was mainly associated with regulation of metabolism, and another protein kinase, LKB1, which was known from genetic studies to be a tumor suppressor. While the idea that cancer is in part a metabolic disorder (first suggested by Warburg in the 1920s [4]) is well recognized today [5], this was not the case in 2003, and our paper perhaps contributed towards its renaissance. The aim of this short review is to recall how we made the original finding, and to discuss some of the directions that these findings have taken the field in the ensuing ten years
- …