11 research outputs found

    Identification of Sequences in the Herpes Simplex Virus Thymidine Kinase Gene Required for Efficient Processing and Polyadenylation.

    Get PDF
    The herpes simplex virus (HSV) type 1 thymidine kinase gene (tk) was resected from its 3\u27 end with BAL 31 exonuclease. Two sets of plasmids were isolated that lacked information distal to the two copies of the hexanucleotide 5\u27-AATAAA-3\u27 located at the 3\u27 end of the HSV tk gene. The presence of a simian virus 40 origin of DNA replication in each plasmid facilitated analysis of patterns of transcription in transfected Cos-1 monkey cells. Transcription analyses were performed with an S1 nuclease protection assay. Efficient processing and polyadenylation at the normal site still occurred when all sequences more than 44 or 46 base pairs (bp) downstream from the first AATAAA were removed (pTK311R/SV010 and pTK209R/SV010). Removal of an additional 7 bp (pTK312R/SV010) decreased the amount of tk mRNA processed at that normal site, and tk mRNA polyadenylated at a cryptic site within pBR322 sequences began to appear. The normal processing and polyadenylation site was not used at all when an additional 12 bp was removed (pTK314R/SV010); the small amount of tk mRNA produced was processed and polyadenylated at the cryptic pBR322 site. The region of the tk gene critical for efficient processing and polyadenylation of tk mRNA is located 20 to 38 bp downstream from the first AATAAA, distal to the polyadenylation site, and as RNA can form a stem-loop structure containing AAUAAA. Similar G + T-rich elements were located in DNA fragments which substitute efficiently for the HSV tk processing and polyadenylation signal and were not found in AATAAA-containing DNA fragments which substitute inefficiently for the HSV tk signal

    The Leukemic Protein Core Binding Factor Beta (CBFbeta)-Smooth-Muscle Myosin Heavy Chain Sequesters CBFalpha2 into Cytoskeletal Filaments and Aggregates

    Get PDF
    The fusion gene CBFB-MYH11 is generated by the chromosome 16 inversion associated with acute myeloid leukemias. This gene encodes a chimeric protein involving the core binding factor β (CBFβ) and the smooth-muscle myosin heavy chain (SMMHC). Mouse model studies suggest that this chimeric protein CBFβ-SMMHC dominantly suppresses the function of CBF, a heterodimeric transcription factor composed of DNA binding subunits (CBFα1 to 3) and a non-DNA binding subunit (CBFβ). This dominant suppression results in the blockage of hematopoiesis in mice and presumably contributes to leukemogenesis. We used transient-transfection assays, in combination with immunofluorescence and green fluorescent protein-tagged proteins, to monitor subcellular localization of CBFβ-SMMHC, CBFβ, and CBFα2 (also known as AML1 or PEBP2αB). When expressed individually, CBFα2 was located in the nuclei of transfected cells, whereas CBFβ was distributed throughout the cell. On the other hand, CBFβ-SMMHC formed filament-like structures that colocalized with actin filaments. Upon cotransfection, CBFα2 was able to drive localization of CBFβ into the nucleus in a dose-dependent manner. In contrast, CBFα2 colocalized with CBFβ-SMMHC along the filaments instead of localizing to the nucleus. Deletion of the CBFα-interacting domain within CBFβ-SMMHC abolished this CBFα2 sequestration, whereas truncation of the C-terminal-end SMMHC domain led to nuclear localization of CBFβ-SMMHC when coexpressed with CBFα2. CBFα2 sequestration by CBFβ-SMMHC was further confirmed in vivo in a knock-in mouse model. These observations suggest that CBFβ-SMMHC plays a dominant negative role by sequestering CBFα2 into cytoskeletal filaments and aggregates, thereby disrupting CBFα2-mediated regulation of gene expression. The pericentric inversion of chromosome 16 [inv(16)(p13q22)] is a cytogenetic abnormality consistently associated with acute myeloid leukemia (AML) subtype M4Eo (2, 21), a variant of subtype M4 with abnormal eosinophils in the bone marrow and sometimes in the peripheral blood. The inversion results in the reciprocal fusions of two genes: theMYH11 gene (16p13), which encodes the smooth-muscle myosin heavy chain (SMMHC), and the CBFB gene (16q22), which encodes the β subunit of the core binding factor (CBFβ) (24). The chimeric gene CBFB-MYH11 fuses most of the 5′ coding region of CBFB in frame with the 3′ portion of MYH11, resulting in the production of the chimeric protein CBFβ-SMMHC. The reciprocal fusion,MYH11-CBFB, is not believed to be important since its expression is below detectable levels in leukemic cells and it is deleted in some patients with an unbalanced inversion (24, 25,29). CBFβ is the heterodimeric partner of CBFα proteins, and together they constitute the core binding factors (CBF). CBF was initially identified as a transcriptional regulator of Moloney murine leukemia virus (50, 51) and polyomavirus (4, 18, 36, 37,43) in mice, and it was subsequently shown to be an important transcriptional activator of genes involved in mammalian hematopoiesis and bone development (5, 12, 14, 15, 20, 32, 40, 46). Monomeric CBFα proteins bind DNA, albeit weakly (3, 50). Although CBFβ does not make any detectable direct contact with DNA (50), it enhances the DNA binding affinity of the CBFα proteins (4, 36). While CBFβ is expressed from a single gene in the human and mouse, there are three CBFα genes, all of which encode the so-called runt domain (3, 22,54), which is required for both DNA binding and interaction with CBFβ. One of the three genes, CBFA2, also known as AML1 or PEBP2αB, is located on human chromosome 21 and is involved in several different leukemias as a result of translocations (16, 31, 34, 35, 41). Chromosomal inversions and translocations involving either CBFB orCBFA2 are the most frequent cytogenetic abnormalities in human AMLs (27). Gene-targeting experiments in mice have demonstrated that the CBFα2 and CBFβ subunits are likely to function together as a complex in vivo. Homozygous disruption of either Cbfa2 (39,48) or Cbfb (42, 49) in mice produces an identical phenotype: both Cbfa2 −/− andCbfb −/− embryos demonstrate a failure of definitive hematopoiesis in the liver, and in both cases the embryos die at around day 12.5 due to extensive hemorrhages. The inv(16) chimeric gene CBFB-MYH11 has been shown to exert a dominant negative effect in vivo by a mouse knock-in experiment (8). CBFB-MYH11was introduced into the mouse genome to replace one copy of theCbfb gene. The expression of this chimeric gene was controlled by the endogenous Cbfb promoter, thus simulating the condition in leukemic patients. CBFβ-SMMHC was found to dominantly suppress the function of the CBFα2:CBFβ heterodimer, since mouse embryos heterozygous for the knock-inCbfb-MYH11 gene (CbfbCBFB-MYH11/+ ) displayed a phenotype similar to that of Cbfb−/− andCbfa2−/− embryos, i.e., failure of definitive hematopoiesis and midgestation lethality. In vitro, the chimeric protein was shown to retain its ability to interact with CBFα proteins and participate in the formation of protein-DNA complexes (23). Although presence of the chimeric protein reduces CBF DNA-binding activity in cultured Ba/F3 lymphoid and 32D c13 myeloid cells (6), it is not clear how this reduction was achieved. Unlike wild-type CBFβ, CBFβ-SMMHC can potentially form dimers and multimers via the rod-like domain of the myosin chain (23, 25). Two possible mechanisms could explain the dominant negative effect of the chimeric CBFβ-SMMHC protein. One is that CBFβ-SMMHC, via heterodimerization with CBFα2, can assemble into a ternary complex at the core sites within promoters of target genes and interfere with the regulation of gene expression. The second possibility is that CBFβ-SMMHC, with its capacity to form multimers, can sequester CBFα2 into nonfunctional complexes, thus preventing it from regulating transcription of target genes. Previous studies by our group demonstrated that CBFβ-SMMHC can form rod-like nuclear structures as well as cytoplasmic stress fibers in NIH 3T3 cells stably transfected with a CBFB-MYH11cDNA construct (53). However, the effect on CBFα2 subcellular localization by CBFβ-SMMHC has not been fully examined. In this study, we used transient-transfection assays in combination with immunofluorescence and green fluorescent protein (GFP) tags to demonstrate that CBFβ-SMMHC does, in fact, sequester CBFα2 in abnormal locations. We also demonstrated that the sequestration requires the abilities of CBFβ-SMMHC to interact with CBFα2 and to multimerize. This observed sequestration can at least partially explain the dominant negative effect of the CBFβ-SMMHC protein on CBF function in leukemogenesis

    Cbfa2 is Required for the Formation of Intra-Aortic Hematopoietic Clusters

    Get PDF
    Cbfa2 (AML1) encodes the DNA-binding subunit of a transcription factor in the small family of core-binding factors (CBFs). Cbfa2 is required for the differentiation of all definitive hematopoietic cells, but not for primitive erythropoiesis. Here we show that Cbfa2 is expressed in definitive hematopoietic progenitor cells, and in endothelial cells in sites from which these hematopoietic cells are thought to emerge. Endothelial cells expressing Cbfa2 are in the yolk sac, the vitelline and umbilical arteries, and in the ventral aspect of the dorsal aorta in the aorta/genital ridge/mesonephros (AGM) region. Endothelial cells lining the dorsal aspect of the aorta, and elsewhere in the embryo, do not express Cbfa2. Cbfa2 appears to be required for maintenance of Cbfa2 expression in the endothelium, and for the formation of intra-aortic hematopoietic clusters from the endothelium

    Runx1 Expression Marks Long-Term Repopulating Hematopoietic Stem Cells in the Midgestation Mouse Embryo

    Get PDF
    AbstractHematopoietic stem cells (HSCs) are first found in the aorta-gonad-mesonephros region and vitelline and umbilical arteries of the midgestation mouse embryo. Runx1 (AML1), the DNA binding subunit of a core binding factor, is required for the emergence and/or subsequent function of HSCs. We show that all HSCs in the embryo express Runx1. Furthermore, HSCs in Runx1+/− embryos are heterogeneous and include CD45+ cells, endothelial cells, and mesenchymal cells. Comparison with wild-type embryos showed that the distribution of HSCs among these various cell populations is sensitive to Runx1 dosage. These data provide the first morphological description of embryonic HSCs and contribute new insight into their cellular origin

    A New Transcription Factor Family Associated with Human Leukemias

    No full text

    Runx1 function in hematopoiesis is required in cells that express Tek

    No full text
    Runx1 expression marks the putative hemogenic endothelium between embryonic days (E) 8.5 to 11.5 of mouse gestation and is required for the formation of intra-aortic hematopoietic clusters, leading to the hypothesis that Runx1 is required for the transition from endothelial to hematopoietic cell. To address this hypothesis, we ablated the Runx1 gene by Cre-recombinase-mediated excision, with Cre expression under the control of the Tek promoter and enhancer. Most embryos died between E12.5 and E13.5 with a phenotype almost identical to Runx1 deficiency. We conclude that Runx1 function in establishing definitive hematopoiesis is required in a Tek+ cell

    Core-Binding Factor Influences the Disease Specificity of Moloney Murine Leukemia Virus

    Get PDF
    The core site in the Moloney murine leukemia virus (Moloney MLV) enhancer was previously shown to be an important determinant of the T-cell disease specificity of the virus. Mutation of the core site resulted in a significant shift in disease specificity of the Moloney virus from T-cell leukemia to erythroleukemia. We and others have since determined that a protein that binds the core site, one of the core-binding factors (CBF) is highly expressed in thymus and is essential for hematopoiesis. Here we test the hypothesis that CBF plays a critical role in mediating pathogenesis of Moloney MLV in vivo. We measured the affinity of CBF for most core sites found in MLV enhancers, introduced sites with different affinities for CBF into the Moloney MLV genome, and determined the effects of these sites on viral pathogenesis. We found a correlation between CBF affinity and the latent period of disease onset, in that Moloney MLVs with high-affinity CBF binding sites induced leukemia following a shorter latent period than viruses with lower-affinity sites. The T-cell disease specificity of Moloney MLV also appeared to correlate with the affinity of CBF for its binding site. The data support a role for CBF in determining the pathogenic properties of Moloney MLV

    Runx1 deficiency predisposes mice to T-lymphoblastic lymphoma

    No full text
    Chromosomal rearrangements affecting RUNX1 and CBFB are common in acute leukemias. These mutations result in the expression of fusion proteins that act dominant-negatively to suppress the normal function of the Runt-related transcription factor 1 (RUNX)/core binding factor β (CBFβ) complexes. In addition, loss-of-function mutations in Runt-related transcription factor 1 (RUNX1) have been identified in sporadic cases of acute myeloid leukemia (AML) and in association with the familial platelet disorder with propensity to develop AML (FPD/AML). In order to examine the hypothesis that decreased gene dosage of RUNX1 may be a critical event in the development of leukemia, we treated chimeric mice generated from Runx1(lacZ/lacZ) embryonic stem (ES) cells that have homozygous disruption of the Runx1 gene with N-ethyl-N-nitrosourea (ENU). We observed an increased incidence of T-lymphoblastic lymphoma in Runx1(lacZ/lacZ) compared with wild-type chimeras and confirmed that the tumors were of ES-cell origin. Our results therefore suggest that deficiency of Runx1 can indeed predispose mice to hematopoietic malignancies
    corecore