90 research outputs found

    Virtual Home Staging: Inverse Rendering and Editing an Indoor Panorama under Natural Illumination

    Full text link
    We propose a novel inverse rendering method that enables the transformation of existing indoor panoramas with new indoor furniture layouts under natural illumination. To achieve this, we captured indoor HDR panoramas along with real-time outdoor hemispherical HDR photographs. Indoor and outdoor HDR images were linearly calibrated with measured absolute luminance values for accurate scene relighting. Our method consists of three key components: (1) panoramic furniture detection and removal, (2) automatic floor layout design, and (3) global rendering with scene geometry, new furniture objects, and a real-time outdoor photograph. We demonstrate the effectiveness of our workflow in rendering indoor scenes under different outdoor illumination conditions. Additionally, we contribute a new calibrated HDR (Cali-HDR) dataset that consists of 137 calibrated indoor panoramas and their associated outdoor photographs

    WALT3D: Generating Realistic Training Data from Time-Lapse Imagery for Reconstructing Dynamic Objects under Occlusion

    Full text link
    Current methods for 2D and 3D object understanding struggle with severe occlusions in busy urban environments, partly due to the lack of large-scale labeled ground-truth annotations for learning occlusion. In this work, we introduce a novel framework for automatically generating a large, realistic dataset of dynamic objects under occlusions using freely available time-lapse imagery. By leveraging off-the-shelf 2D (bounding box, segmentation, keypoint) and 3D (pose, shape) predictions as pseudo-groundtruth, unoccluded 3D objects are identified automatically and composited into the background in a clip-art style, ensuring realistic appearances and physically accurate occlusion configurations. The resulting clip-art image with pseudo-groundtruth enables efficient training of object reconstruction methods that are robust to occlusions. Our method demonstrates significant improvements in both 2D and 3D reconstruction, particularly in scenarios with heavily occluded objects like vehicles and people in urban scenes.Comment: To appear in CVPR 2024. Homepage: https://www.cs.cmu.edu/~walt3

    Novel Depth Cues from Uncalibrated Near-field Lighting

    Full text link
    We present the first method to compute depth cues from images taken solely under uncalibrated near point lighting. A stationary scene is illuminated by a point source that is moved approximately along a line or in a plane. We observe the brightness profile at each pixel and demonstrate how to obtain three novel cues: plane-scene intersections, depth ordering and mirror symmetries. These cues are defined with respect to the line/plane in which the light source moves, and not the camera viewpoint. Plane-Scene Intersections are detected by finding those scene points that are closest to the light source path at some time instance. Depth Ordering for scenes with homogeneous BRDFs is obtained by sorting pixels according to their shortest distances from a plane containing the light source. Mirror Symmetry pairs for scenes with homogeneou
    • …
    corecore