27 research outputs found

    Trp2 Peptide Vaccine Adjuvanted with ( R )-DOTAP Inhibits Tumor Growth in an Advanced Melanoma Model

    Get PDF
    Previously we have shown cationic lipid (R)-DOTAP as the immunologically active enantiomer of the DOTAP racemic mixture, initiating complete tumor regression in an exogenous antigen model (murine cervical cancer model). Here, we investigate the use of (R)-DOTAP as an efficacious adjuvant delivering an endogenous antigen in an aggressive murine solid tumor melanoma model. (R)-DOTAP/Trp2 peptide complexes showed decreasing size and charge with increasing peptide concentration, taking a rod-shape at highest concentrations. The particles were stable for at 2 weeks at 4°C. A dose of 75nmol Trp2 (formulated in (R)-DOTAP) was able to show statistically significant tumor growth delay compared to lower doses of 5 and 25nmol which were no different than untreated tumors. (R)-DOTAP/Trp2 (75nmol) treated mice also showed increased T cell IFN-γ secretion after restimulation with Trp2, as well as CTL activity in vivo. This vaccination group also showed the highest population of functionally active tumor-infiltrating lymphocytes, indicated by IFN-γ secretion after restimulation with Trp2. Thus, (R)-DOTAP has shown the ability to break tolerance as an adjuvant. Its activity to enhance immunogenicity of other tumor associated antigens should be studied further

    Turning an antiviral into an anticancer drug: Nanoparticle delivery of acyclovir monophosphate

    Get PDF
    Anti-herpes simplex virus (HSV) drug acyclovir (ACV) is phosphorylated by the viral thymidine kinase (TK), but not the cellular TK. Phosphorylated ACV inhibits cellular DNA synthesis and kills the infected cells. We hypothesize that ACV monophosphate (ACVP), which is an activated metabolite of ACV, should be efficient in killing cells independent of HSV-TK. If so, ACVP should be a cytotoxic agent if properly delivered to the cancer cells. The Lipid/Calcium/Phosphate (LCP) nanoparticles (NPs) with a membrane/core structure were used to encapsulate ACVP to facilitate the targeted delivery of ACVP to the tumor. The LCP NPs showed entrapment efficiency of ~69%, the nano-scaled particle size and positive zeta potential. Moreover, ACVP-loaded LCP NPs (A-LCP NPs) exhibited concentration-dependent cytotoxicity against H460 cells and increased S-phase arrest. More importantly, a significant reduction of the tumor volume over 4 days following administration (p<0.05~0.005) of A-LCP NPs, suggests excellent in vivo efficacy. Whereas, two free drugs (ACV and ACVP) and blank LCP NPs showed little or no therapeutic effect. It was also found that the high efficacy of A-LCP NPs was associated with the ability to induce dramatic apoptosis of the tumor cells, as well as significantly inhibit tumor cell proliferation and cell cycle progression. In conclusion, with the help of LCP NPs, monophosphorylation modification of ACV can successfully modify an HSV-TK-dependent antiviral drug into an anti-tumor drug

    Theranostic etoposide phosphate/indium nanoparticles for cancer therapy and imaging

    Get PDF
    Etoposide phosphate, a water-soluble anti-cancer prodrug, was successfully encapsulated together with indium in nanoparticles. We have used indium both as a carrier to deliver etoposide phosphate and as a SPECT imaging agent through incorporation of 111 In

    Multifunctional Nanoparticles Based on a Single-Molecule Modification for the Treatment of Drug-Resistant Cancer

    Get PDF
    Multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. Tocopheryl polyethylene glycol 1000 succinate (TPGS) has been extensively explored for the treatment of MDR in cancer because of its ability to inhibit P-glycoprotein. Here, we have established multifunctional nanoparticles (MFNPs) using a single-molecule modification of TPGS, which can deliver a hydrophobic drug, paclitaxel (PTX), and a hydrophilic drug, fluorouracil (5-FU), and overcome MDR in cancer. Our data indicated that, when delivered into a PTX-resistant cell line using MFNPs, the combination of PTX and 5-FU was more cytotoxic than each agent individually

    Nickel(II) Dithiocarbamate Complexes Containing Sulforhodamine B as Fluorescent Probes for Selective Detection of Nitrogen Dioxide

    Get PDF
    We synthesized the Ni(II) complexes with dithiocarbamate ligand derived from ortho and para isomers sulforhodamine B fluorophores and demonstrated they are highly selective in reaction with nitrogen dioxide (NO2). Comparing to the para isomer, the ortho isomer showed much greater fluorescence increase upon reaction with nitrogen dioxide, which led to oxidation and de-complexation of dithiocarbamate ligand from Ni(II). We applied this probe for visual detection of 1 ppm nitrogen dioxide in gas phase and fluorescence imaging of NO2 in macrophage cells treated with nitrogen oxide donor

    Cationic amphiphiles: promising carriers of genetic materials in gene therapy

    No full text
    The clinical success of gene therapy critically depends on the use of efficient and safe gene delivery reagents. The present tutorial review is aimed at inspiring young researchers and students to take up the unsolved challenges in using cationic amphiphiles as safe gene transfer reagents. The review highlights important structure-activity studies in the field to date including the use of cationic amphiphiles for receptor specific targeted gene therapy and for delivery of siRNAs in the emerging field of RNA interference

    Cationic amphiphile with shikimic acid headgroup shows more systemic promise than its mannosyl analogue as DNA vaccine carrier in dendritic cell based genetic immunization

    No full text
    Mannosylated cationic vectors have been previously used for delivering DNA vaccines to antigen presenting cells (APCs) via mannose receptors expressed on the cell surface of APCs. Here we show that cationic amphiphiles containing mannose-mimicking quinic acid and shikimic acid headgroups deliver genes to APCs via mannose receptor. Cationic amphiphile with shikimic acid headgroup was more efficacious than its mannosyl counterpart in combating mouse tumor growth by dendritic cell (the most professional APC) based genetic immunization

    Investigation of pH-Responsiveness inside Lipid Nanoparticles for Parenteral mRNA Application Using Small-Angle X-ray Scattering

    No full text
    Messenger ribonucleic acid (mRNA)-based nanomedicines have shown to be a promising new lead in a broad field of potential applications such as tumor immunotherapy. Of these nanomedicines, lipid-based mRNA nanoparticles comprising ionizable lipids are gaining increasing attention as versatile technologies for fine-tuning toward a given application, with proven potential for successful development up to clinical practice. Still, several hurdles have to be overcome to obtain a drug product that shows adequate mRNA delivery and clinical efficacy. In this study, pH-induced changes in internal molecular organization and overall physicochemical characteristics of lipoplexes comprising ionizable lipids were investigated using small-angle X-ray scattering and supplementary techniques. These changes were determined for different types of ionizable lipids, present at various molar fractions and N/P ratios inside the phospholipid membranes. The investigated systems showed a lamellar organization, allowing an accurate determination of pH-dependent structural changes. The differences in the pH responsiveness of the systems comprising different ionizable lipids and mRNA fractions could be clearly revealed from their structural evolution. Measurements of the degree of ionization and pH-dependent mRNA loading into the systems by fluorescence assays supported the findings from the structural investigation. Our approach allows for direct in situ determination of the structural response of the lipoplex systems to changes of the environmental pH similar to that observed for endosomal uptake. These data therefore provide valuable complementary information for understanding and fine-tuning of tailored mRNA delivery systems toward improved cellular uptake and endosomal processing
    corecore