334 research outputs found

    Carbon Monoxide in type II supernovae

    Full text link
    Infrared spectra of two type II supernovae 6 months after explosion are presented. The spectra exhibit a strong similarity to the observations of SN 1987A and other type II SNe at comparable epochs. The continuum can be fitted with a cool black body and the hydrogen lines have emissivities that are approximately those of a Case B recombination spectrum. The data extend far enough into the thermal region to detect emission by the first overtone of carbon monoxide. The molecular emission is modeled and compared with that in the spectra of SN 1987A. It is found that the flux in the CO first overtone is comparable to that found in SN 1987A. We argue that Carbon Monoxide forms in the ejecta of all type II SNe during the first year after explosion.Comment: 6 pages, 6 figures, accepted for publications in A&

    A reddening-free method to estimate the 56^{56}Ni mass of Type Ia supernovae

    Full text link
    The increase in the number of Type Ia supernovae (SNe\,Ia) has demonstrated that the population shows larger diversity than has been assumed in the past. The reasons (e.g. parent population, explosion mechanism) for this diversity remain largely unknown. We have investigated a sample of SNe\,Ia near-infrared light curves and have correlated the phase of the second maximum with the bolometric peak luminosity. The peak bolometric luminosity is related to the time of the second maximum (relative to the {\it B} light curve maximum) as follows : Lmax(1043ergs1)=(0.039±0.004)×t2(J)(days)+(0.013±0.106)L_{max}(10^{43} erg s^{-1}) = (0.039 \pm 0.004) \times t_2(J)(days) + (0.013 \pm 0.106). 56^{56}Ni masses can be derived from the peak luminosity based on Arnett's rule, which states that the luminosity at maximum is equal to instantaneous energy generated by the nickel decay. We check this assumption against recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models and find this assumption is valid to within 10\% in recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models. The LmaxL_{max} vs. t2t_2 relation is applied to a sample of 40 additional SNe\,Ia with significant reddening (E(BV)>E(B-V) > 0.1 mag) and a reddening-free bolometric luminosity function of SNe~Ia is established. The method is tested with the 56^{56}Ni mass measurement from the direct observation of γ\gamma-rays in the heavily absorbed SN 2014J and found to be fully consistent. Super-Chandrasekhar-mass explosions, in particular SN\,2007if, do not follow the relations between peak luminosity and second IR maximum. This may point to an additional energy source contributing at maximum light. The luminosity function of SNe\,Ia is constructed and is shown to be asymmetric with a tail of low-luminosity objects and a rather sharp high-luminosity cutoff, although it might be influenced by selection effects.Comment: 9 pages, 3 figures, Accepted to A&

    Optical and near infrared observations of SN 1998bu

    Full text link
    Infrared and optical spectra of SN 1998bu at an age of one year after explosion are presented. The data show evidence for the radioactive decay of 56Co to 56Fe, long assumed to be the powering source for the supernova light curve past maximum light. The spectra provide direct evidence for at least 0.4 solar masses of iron being present in the ejecta of the supernova. The fits to the data also show that the widths of the emission lines increase with time. Photometric measurements in the H-band show that the supernova is not fading during the observation period. This is consistent with theoretical expectations.Comment: accepted A&A, 7 pages, 9 figure

    Gamma-Ray Lines from Asymmetric Supernovae

    Full text link
    We present 3-dimensional SPH simulations of supernova explosions from 100 seconds to 1 year after core-bounce. By extending our modelling efforts to a 3-dimensional hydrodynamics treatment, we are able to investigate the effects of explosion asymmetries on mixing and gamma-ray line emergence in supernovae. A series of initial explosion conditions are implemented, including jet-like and equatorial asymmetries of varying degree. For comparison, symmetric explosion models are also calculated. A series of time slices from the explosion evolution are further analyzed using a 3-dimensional Monte Carlo gamma-ray transport code. The emergent hard X- and gamma-ray spectra are calculated as a function of both viewing angle and time, including trends in the gamma-ray line profiles. We find significant differences in the velocity distribution of radioactive nickel between the symmetric and asymmetric explosion models. The effects of this spatial distribution change are reflected in the overall high energy spectrum, as well as in the individual gamma-ray line profiles.Comment: 32 pages, 14 figures, LAUR-02-6114, http://qso.lanl.gov/~clf "Clumping Asymmetry" section revise

    Astrophysics in 2006

    Get PDF
    The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries.Comment: 244 pages, no figure

    Limits on stable iron in Type\,Ia supernovae from NIR spectroscopy

    Full text link
    We obtained optical and near-infrared spectra of Type\,Ia supernovae (SNe\,Ia) at epochs ranging from 224 to 496 days after the explosion. The spectra show emission lines from forbidden transitions of singly ionised iron and cobalt atoms. We used non-local thermodynamic equilibrium (NLTE) modelling of the first and second ionisation stages of iron, nickel, and cobalt to fit the spectra using a sampling algorithm allowing us to probe a broad parameter space. We derive velocity shifts, line widths, and abundance ratios for iron and cobalt. The measured line widths and velocity shifts of the singly ionised ions suggest a shared emitting region. Our data are fully compatible with radioactive 56^{56}Ni decay as the origin for cobalt and iron. We compare the measured abundance ratios of iron and cobalt to theoretical predictions of various SN\,Ia explosion models. These models include, in addition to 56^{56}Ni, different amounts of 57^{57}Ni and stable 54,56^{54,56}Fe. We can exclude models that produced only 54,56^{54,56}Fe or only 57^{57}Ni in addition to 56^{56}Ni. If we consider a model that has 56^{56}Ni, 57^{57}Ni, and 54,56^{54,56}Fe then our data imply that these ratios are 54,56^{54,56}Fe / 56^{56}Ni =0.272±0.086=0.272\pm0.086 and 57^{57}Ni / 56^{56}Ni =0.032±0.011=0.032\pm0.011.Comment: 10 pages, 7 figures, Accepted for publication in A&

    Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Get PDF
    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modeling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modeling of the [O I] 6300, 6364 lines constrains the progenitors of these three SNe to the M_ZAMS=12-16 M_sun range (ejected oxygen masses 0.3-0.9 M_sun), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from M_ZAMS >= 17 M_sun progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low/moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of of 0.02-0.14 M_sun is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO-burning gives strong [N II] 6548, 6583 emission lines that dominate over H-alpha emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable H-alpha emission or absorption after ~150 days, and nebular phase emission seen around 6550 A is in many cases likely caused by [N II] 6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated...(abridged)Comment: Published versio
    corecore