237 research outputs found

    Interspecies physiological variation as a tool for cross-species assessments of global warming-induced endangerment: validation of an intrinsic determinant of macroecological and phylogeographic structure

    Get PDF
    Global warming is now recognized as the dominant threat to biodiversity because even protected populations and habitats are susceptible. Nonetheless, current criteria for evaluating species' relative endangerment remain purely ecological, and the accepted conservation strategies of habitat preservation and population management assume that species can mount ecological responses if afforded protection. The insidious threat from climate change is that it will attenuate or preclude ecological responses by species that are physiologically constrained; yet, quantitative, objective criteria for assessing relative susceptibility of diverse taxa to warming-induced stress are wanting. We explored the utility of using interspecies physiological variation for this purpose by relating species' physiological phenotypes to landscape patterns of ecological and genetic exchange. Using a salamander model system in which ecological, genetic and physiological diversity are well characterized, we found strong quantitative relationships of basal metabolic rates (BMRs) to both macroecological and phylogeographic patterns, with decreasing BMR leading to dispersal limitation (small contemporary ranges with marked phylogeographic structure). Measures of intrinsic physiological tolerance, which vary systematically with macroecological and phylogeographic patterns, afford objective criteria for assessing endangerment across a wide range of species and should be incorporated into conservation assessment criteria that currently rely exclusively upon ecological predictors

    Population assessment of the American crocodile Crocodylus acutus (Crocodilia: Crocodylidae) on the Pacific coast of Costa Rica

    Get PDF
    The American crocodile, Crocodylus acutus, is widely distributed in the American neotropics. It is endangered throughout most of its range and is listed as vulnerable by the International Union for the Conservation of Natural Fauna and Flora (IUCN) and on Appendix I of the Convention for the International Trade in Endangered Species of Wild Flora and Fauna (CITES). Despite this listing, there are few published reports on population status throughout most of its range. We investigated the status of the C. acutus, at several locations along the Pacific coast of Costa Rica. We carried out spotlight and nesting surveys from 2007-2009 along the Costa Rican Pacific coast in four distinct areas, coastal areas of Las Baulas (N=40) and Santa Rosa (N=9) National Parks and the Osa Conservation Area (N=13), and upriver in Palo Verde National Park (N=11). We recorded crocodile locations and standard environmental data at each observation. Encounter rates, population structure, distribution within each area and data on successful nesting (presence of hatchlings, nests, etc) were determined. We attempted to capture all crocodiles to record standard morphometrics. A total of 586 crocodiles were observed along 185.8km of survey route. The majority of animals encountered (54.9%) were either hatchlings (<0.5m) or juveniles (0.5-1.25m). The average non-hatchling encounter rate per survey for the Pacific coast was 3.1 crocodiles/km, with individual encounter rates ranging from 1.2 crocodiles/km to 4.3 crocodiles/km in Las Baulas National Park and the Osa Conservation Area respectively. Distribution of size classes within the individual locations did not differ with the exception of Santa Rosa and Las Baulas National Parks, where hatchlings were found in water with lower salinities. These were the first systematic surveys in several of the areas studied and additional work is needed to further characterize the American crocodile population in Costa Rica.Rev. Biol. Trop. 60 (4): 1889-1901. Epub 2012 December 01

    Persistent Leatherback Turtle Migrations Present Opportunities for Conservation

    Get PDF
    Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004–2005, 2005–2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre

    Practical Guidance for Integrating Data Management into Long-Term Ecological Monitoring Projects

    Get PDF
    Long-term monitoring and research projects are essential to understand ecological change and the effectiveness of management activities. An inherent characteristic of long-term projects is the need for consistent data collection over time, requiring rigorous attention to data management and quality assurance. Recent papers have provided broad recommendations for data management; however, practitioners need more detailed guidance and examples. We present general yet detailed guidance for the development of comprehensive, concise, and effective data management for monitoring projects. The guidance is presented as a graded approach, matching the scale of data management to the needs of the organization and the complexity of the project. We address the following topics: roles and responsibilities; consistent and precise data collection; calibration of field crews and instrumentation; management of tabular, photographic, video, and sound data; data completeness and quality; development of metadata; archiving data; and evaluation of existing data from other sources. This guidance will help practitioners execute effective data management, thereby, improving the quality and usability of data for meeting project objectives as well as broader meta-analysis and macrosystem ecology research

    Embryonic Death Is Linked to Maternal Identity in the Leatherback Turtle (Dermochelys coriacea)

    Get PDF
    Leatherback turtles have an average global hatching success rate of ∼50%, lower than other marine turtle species. Embryonic death has been linked to environmental factors such as precipitation and temperature, although, there is still a lot of variability that remains to be explained. We examined how nesting season, the time of nesting each season, the relative position of each clutch laid by each female each season, maternal identity and associated factors such as reproductive experience of the female (new nester versus remigrant) and period of egg retention between clutches (interclutch interval) affected hatching success and stage of embryonic death in failed eggs of leatherback turtles nesting at Playa Grande, Costa Rica. Data were collected during five nesting seasons from 2004/05 to 2008/09. Mean hatching success was 50.4%. Nesting season significantly influenced hatching success in addition to early and late stage embryonic death. Neither clutch position nor nesting time during the season had a significant affect on hatching success or the stage of embryonic death. Some leatherback females consistently produced nests with higher hatching success rates than others. Remigrant females arrived earlier to nest, produced more clutches and had higher rates of hatching success than new nesters. Reproductive experience did not affect stage of death or the duration of the interclutch interval. The length of interclutch interval had a significant affect on the proportion of eggs that failed in each clutch and the developmental stage they died at. Intrinsic factors such as maternal identity are playing a role in affecting embryonic death in the leatherback turtle
    corecore