303 research outputs found
Endoplasmic Reticulum PI(3)P Lipid Binding Targets Malaria Proteins to the Host Cell
SummaryHundreds of effector proteins of the human malaria parasite Plasmodium falciparum constitute a “secretome” carrying a host-targeting (HT) signal, which predicts their export from the intracellular pathogen into the surrounding erythrocyte. Cleavage of the HT signal by a parasite endoplasmic reticulum (ER) protease, plasmepsin V, is the proposed export mechanism. Here, we show that the HT signal facilitates export by recognition of the lipid phosphatidylinositol-3-phosphate (PI(3)P) in the ER, prior to and independent of protease action. Secretome HT signals, including those of major virulence determinants, bind PI(3)P with nanomolar affinity and amino acid specificities displayed by HT-mediated export. PI(3)P-enriched regions are detected within the parasite's ER and colocalize with endogenous HT signal on ER precursors, which also display high-affinity binding to PI(3)P. A related pathogenic oomycete's HT signal export is dependent on PI(3)P binding, without cleavage by plasmepsin V. Thus, PI(3)P in the ER functions in mechanisms of secretion and pathogenesis
Rigorous mean field model for CPA: Anderson model with free random variables
A model of a randomly disordered system with site-diagonal random energy
fluctuations is introduced. It is an extension of Wegner's -orbital model to
arbitrary eigenvalue distribution in the electronic level space. The new
feature is that the random energy values are not assumed to be independent at
different sites but free. Freeness of random variables is an analogue of the
concept of independence for non-commuting random operators. A possible
realization is the ensemble of at different lattice-sites randomly rotated
matrices. The one- and two-particle Green functions of the proposed hamiltonian
are calculated exactly. The eigenstates are extended and the conductivity is
nonvanishing everywhere inside the band. The long-range behaviour and the
zero-frequency limit of the two-particle Green function are universal with
respect to the eigenvalue distribution in the electronic level space. The
solutions solve the CPA-equation for the one- and two-particle Green function
of the corresponding Anderson model. Thus our (multi-site) model is a rigorous
mean field model for the (single-site) CPA. We show how the Llyod model is
included in our model and treat various kinds of noises.Comment: 24 pages, 2 diagrams, Rev-Tex. Diagrams are available from the
authors upon reques
Semigroups of distributions with linear Jacobi parameters
We show that a convolution semigroup of measures has Jacobi parameters
polynomial in the convolution parameter if and only if the measures come
from the Meixner class. Moreover, we prove the parallel result, in a more
explicit way, for the free convolution and the free Meixner class. We then
construct the class of measures satisfying the same property for the two-state
free convolution. This class of two-state free convolution semigroups has not
been considered explicitly before. We show that it also has Meixner-type
properties. Specifically, it contains the analogs of the normal, Poisson, and
binomial distributions, has a Laha-Lukacs-type characterization, and is related
to the case of quadratic harnesses.Comment: v3: the article is merged back together with arXiv:1003.4025. A
significant revision following suggestions by the referee. 2 pdf figure
Applications of Automata and Graphs: Labeling-Operators in Hilbert Space I
We show that certain representations of graphs by operators on Hilbert space
have uses in signal processing and in symbolic dynamics. Our main result is
that graphs built on automata have fractal characteristics. We make this
precise with the use of Representation Theory and of Spectral Theory of a
certain family of Hecke operators. Let G be a directed graph. We begin by
building the graph groupoid G induced by G, and representations of G. Our main
application is to the groupoids defined from automata. By assigning weights to
the edges of a fixed graph G, we give conditions for G to acquire fractal-like
properties, and hence we can have fractaloids or G-fractals. Our standing
assumption on G is that it is locally finite and connected, and our labeling of
G is determined by the "out-degrees of vertices". From our labeling, we arrive
at a family of Hecke-type operators whose spectrum is computed. As
applications, we are able to build representations by operators on Hilbert
spaces (including the Hecke operators); and we further show that automata built
on a finite alphabet generate fractaloids. Our Hecke-type operators, or
labeling operators, come from an amalgamated free probability construction, and
we compute the corresponding amalgamated free moments. We show that the free
moments are completely determined by certain scalar-valued functions.Comment: 69 page
The Index of (White) Noises and their Product Systems
(See detailed abstract in the article.) We single out the correct class of
spatial product systems (and the spatial endomorphism semigroups with which the
product systems are associated) that allows the most far reaching analogy in
their classifiaction when compared with Arveson systems. The main differences
are that mere existence of a unit is not it sufficient: The unit must be
CENTRAL. And the tensor product under which the index is additive is not
available for product systems of Hilbert modules. It must be replaced by a new
product that even for Arveson systems need not coincide with the tensor
product
Aggregatibacter Actinomycetemcomitans Leukotoxin is Post-Translationally Modified by Addition of Either Saturated or Hydroxylated Fatty Acyl Chains
Aggregatibacter actinomycetemcomitans, a common inhabitant of the human upper aerodigestive tract, produces a repeat in toxin (RTX), leukotoxin (LtxA). The LtxA is transcribed as a 114-kDa inactive protoxin with activation being achieved by attachment of short chain fatty acyl groups to internal lysine residues. Methyl esters of LtxA that were isolated from A. actinomycetemcomitans strains JP2 and HK1651 and subjected to gas chromatography/mass spectrometry contained palmitoyl (C16:0, 27-29%) and palmitolyl (C16:1 cis Δ9, 43-44%) fatty acyl groups with smaller quantities of myristic (C14:0, 14%) and stearic (C18:0, 12-14%) fatty acids. Liquid chromatography/mass spectrometry of tryptic peptides from acylated and unacylated recombinant LtxA confirmed that Lys562 and Lys687 are the sites of acyl group attachment. During analysis of recombinant LtxA peptides, we observed peptide spectra that were not observed as part of the RTX acylation schemes of either Escherichia coliα-hemolysin or Bordetella pertussis cyclolysin. Mass calculations of these spectra suggested that LtxA was also modified by the addition of monohydroxylated forms of C14 and C16 acyl groups. Multiple reaction monitoring mass spectrometry identified hydroxymyristic and hydroxypalmitic acids in wild-type LtxA methyl esters. Single or tandem replacement of Lys562 and Lys687 with Arg blocks acylation, resulting in a \u3e75% decrease in cytotoxicity when compared with wild-type toxin, suggesting that these post-translational modifications are playing a critical role in LtxA-mediated target cell cytotoxicity. © 2011 John Wiley & Sons A/S
Aggregatibacter Actinomycetemcomitans Leukotoxin is Post-Translationally Modified by Addition of Either Saturated or Hydroxylated Fatty Acyl Chains
Aggregatibacter actinomycetemcomitans, a common inhabitant of the human upper aerodigestive tract, produces a repeat in toxin (RTX), leukotoxin (LtxA). The LtxA is transcribed as a 114-kDa inactive protoxin with activation being achieved by attachment of short chain fatty acyl groups to internal lysine residues. Methyl esters of LtxA that were isolated from A. actinomycetemcomitans strains JP2 and HK1651 and subjected to gas chromatography/mass spectrometry contained palmitoyl (C16:0, 27–29%) and palmitolyl (C16:1 cis Δ9, 43–44%) fatty acyl groups with smaller quantities of myristic (C14:0, 14%) and stearic (C18:0, 12–14%) fatty acids. Liquid chromatography/mass spectrometry of tryptic peptides from acylated and unacylated recombinant LtxA confirmed that Lys562 and Lys687 are the sites of acyl group attachment. During analysis of recombinant LtxA peptides, we observed peptide spectra that were not observed as part of the RTX acylation schemes of either Escherichia coli α-hemolysin or Bordetella pertussis cyclolysin. Mass calculations of these spectra suggested that LtxA was also modified by the addition of monohydroxylated forms of C14 and C16 acyl groups. Multiple reaction monitoring mass spectrometry identified hydroxymyristic and hydroxypalmitic acids in wild-type LtxA methyl esters. Single or tandem replacement of Lys562 and Lys687 with Arg blocks acylation, resulting in a \u3e75% decrease in cytotoxicity when compared with wild-type toxin, suggesting that these posttranslational modifications are playing a critical role in LtxA-mediated target cell cytotoxicity
Inferring hidden states in Langevin dynamics on large networks: Average case performance
We present average performance results for dynamical inference problems in
large networks, where a set of nodes is hidden while the time trajectories of
the others are observed. Examples of this scenario can occur in signal
transduction and gene regulation networks. We focus on the linear stochastic
dynamics of continuous variables interacting via random Gaussian couplings of
generic symmetry. We analyze the inference error, given by the variance of the
posterior distribution over hidden paths, in the thermodynamic limit and as a
function of the system parameters and the ratio {\alpha} between the number of
hidden and observed nodes. By applying Kalman filter recursions we find that
the posterior dynamics is governed by an "effective" drift that incorporates
the effect of the observations. We present two approaches for characterizing
the posterior variance that allow us to tackle, respectively, equilibrium and
nonequilibrium dynamics. The first appeals to Random Matrix Theory and reveals
average spectral properties of the inference error and typical posterior
relaxation times, the second is based on dynamical functionals and yields the
inference error as the solution of an algebraic equation.Comment: 20 pages, 5 figure
Exosomal αvβ6 integrin is required for monocyte M2 polarization in prostate cancer
Therapeutic approaches aimed at curing prostate cancer are only partially successful given the occurrence of highly metastatic resistant phenotypes that frequently develop in response to therapies. Recently, we have described αvβ6, a surface receptor of the integrin family as a novel therapeutic target for prostate cancer; this epithelial-specific molecule is an ideal target since, unlike other integrins, it is found in different types of cancer but not in normal tissues. We describe a novel αvβ6-mediated signaling pathway that has profound effects on the microenvironment. We show that αvβ6 is transferred from cancer cells to monocytes, including β6-null monocytes, by exosomes and that monocytes from prostate cancer patients, but not from healthy volunteers, express αvβ6. Cancer cell exosomes, purified via density gradients, promote M2 polarization, whereas αvβ6 down-regulation in exosomes inhibits M2 polarization in recipient monocytes. Also, as evaluated by our proteomic analysis, αvβ6 down-regulation causes a significant increase in donor cancer cells, and their exosomes, of two molecules that have a tumor suppressive role, STAT1 and MX1/2. Finally, using the Ptenpc−/− prostate cancer mouse model, which carries a prostate epithelial-specific Pten deletion, we demonstrate that αvβ6 inhibition in vivo causes up-regulation of STAT1 in cancer cells. Our results provide evidence of a novel mechanism that regulates M2 polarization and prostate cancer progression through transfer of αvβ6 from cancer cells to monocytes through exosomes
- …