70 research outputs found

    Gondwanan Vicariance or Dispersal in the Tropics? The Biogeographic History of the Tropical Monocot Family Costaceae (Zingiberales)

    Get PDF
    Costaceae are a pantropical family, distinguished from other families within the order Zingiberales by their spiral phyllotaxy and showy labellum comprised of five fused staminodes. While the majority of Costaceae species are found in the neotropics, the pantropical distribution of the family as a whole could be due to a number of historical biogeographic scenarios, including continental-drift mediated vicariance and long-distance dispersal events. Here, the hypothesis of an ancient Gondwanan distribution followed by vicariance via continental drift as the leading cause of the current pantropical distribution of Costaceae is tested, using molecular dating of cladogenic events combined with phylogeny-based biogeographic analyses. Dispersal-Vicariance Analysis (DIVA) is used to determine ancestral distributions based upon the modem distribution of extant taxa in a phylogenetic context. Diversification ages within Costaceae are estimated using chloroplast DNA data (trnL-F and trnK) analyzed with a local clock procedure. In the absence of fossil evidence, the divergence time between Costaceae and Zingiberaceae, as estimated in an ordinal analysis of Zingiberales, is used as the calibration point for converting relative to absolute ages. The results of the temporal analysis based on extant taxa indicate that the initial diversification within Costaceae occurred approximately 65 million years ago, long after the final break up of the Gondwanan supercontinent. Considering this minimum age of diversification, potential scenarios for the current biogeographic patterns found in Costaceae are presented in a temporal and spatial context. The evolution of specialized floral forms associated with specific pollinators is also discussed within the biogeographic framework

    Understanding Plant Cellulose Synthases through a Comprehensive Investigation of the Cellulose Synthase Family Sequences

    Get PDF
    The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA) family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized clades and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair CesA function, and compare these sites to those observed in the closest cellulose synthase-like (Csl) families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments

    Loss of YABBY2-Like Gene Expression May Underlie the Evolution of the Laminar Style in Canna and Contribute to Floral Morphological Diversity in the Zingiberales.

    Get PDF
    The Zingiberales is an order of tropical monocots that exhibits diverse floral morphologies. The evolution of petaloid, laminar stamens, staminodes, and styles contributes to this diversity. The laminar style is a derived trait in the family Cannaceae and plays an important role in pollination as its surface is used for secondary pollen presentation. Previous work in the Zingiberales has implicated YABBY2-like genes, which function in promoting laminar outgrowth, in the evolution of stamen morphology. Here, we investigate the evolution and expression of Zingiberales YABBY2-like genes in order to understand the evolution of the laminar style in Canna. Phylogenetic analyses show that multiple duplication events have occurred in this gene lineage prior to the diversification of the Zingiberales. Reverse transcription-PCR in Canna, Costus, and Musa reveals differential expression across floral organs, taxa, and gene copies, and a role for YABBY2-like genes in the evolution of the laminar style is proposed. Selection tests indicate that almost all sites in conserved domains are under purifying selection, consistent with their functional relevance, and a motif unique to monocot YABBY2-like genes is identified. These results contribute to our understanding of the molecular mechanisms underlying the evolution of floral morphologies

    The Evolutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales

    Get PDF
    Zingiberales are a primarily tropical lineage of monocots. The current pantropical distribution of the order suggests an historical Gondwanan distribution, however the evolutionary history of the group has never been analyzed in a temporal context to test if the order is old enough to attribute its current distribution to vicariance mediated by the break-up of the supercontinent. Based on a phylogeny derived from morphological and molecular characters, we develop a hypothesis for the spatial and temporal evolution of Zingiberales using Dispersal-Vicariance Analysis (DIVA) combined with a local molecular clock technique that enables the simultaneous analysis of multiple gene loci with multiple calibration points. We employ a pairwise relative rates test to assign four rate classes to 24 ingroup and 12 outgroup taxa using evidence from three gene regions (rbcL, atpB, 18S). Five nodes of in group and outgroup taxa were calibrated using fossils and previous monocot-wide age estimates. The results are compared with non-parametric rate smoothing and penalized likelihood estimates of temporal diversification. The divergence of Zingiberales from the remaining commelinid monocots is found to have occurred around 124 million years ago, with major family-level lineages becoming established in the late Cretaceous (80-110 mya) and crown lineages within each family beginning to diversify during the early to mid-Tertiary (29-64 mya). Ancestral Gondwanan vicariance combined with a potential Laurasian distribution and multiple secondary dispersal events within families during the Tertiary can explain the main biogeographic events leading to the current pantropical distribution of this tropical order

    Revisiting the Zingiberales: Using Multiplexed Exon Capture to Resolve Ancient and Recent Phylogenetic Splits in a Charismatic Plant Lineage

    Get PDF
    The Zingiberales are an iconic order of monocotyledonous plants comprising eight families with distinctive and diverse floral morphologies and representing an important ecological element of tropical and subtropical forests. While the eight families are demonstrated to be monophyletic, phylogenetic relationships among these families remain unresolved. Neither combined morphological and molecular studies nor recent attempts to resolve family relationships using sequence data from whole plastomes has resulted in a well-supported, family-level phylogenetic hypothesis of relationships. Here we approach this challenge by leveraging the complete genome of one member of the order, Musa acuminata, together with transcriptome information from each of the other seven families to design a set of nuclear loci that can be enriched from highly divergent taxa with a single array-based capture of indexed genomic DNA. A total of 494 exons from 418 nuclear genes were captured for 53 ingroup taxa. The entire plastid genome was also captured for the same 53 taxa. Of the total genes captured, 308 nuclear and 68 plastid genes were used for phylogenetic estimation. The concatenated plastid and nuclear dataset supports the position of Musaceae as sister to the remaining seven families. Moreover, the combined dataset recovers known intra- and inter-family phylogenetic relationships with generally high bootstrap support. This is a flexible and cost effective method that gives the broader plant biology community a tool for generating phylogenomic scale sequence data in non-model systems at varying evolutionary depths

    The phylogeny of Heliconia (Heliconiaceae) and the evolution of floral presentation

    Get PDF
    © 2016 Elsevier Inc. Heliconia (Heliconiaceae, order Zingiberales) is among the showiest plants of the Neotropical rainforest and represent a spectacular co-evolutionary radiation with hummingbirds. Despite the attractiveness and ecological importance of many Heliconia, the genus has been the subject of limited molecular phylogenetic studies. We sample seven markers from the plastid and nuclear genomes for 202 samples of Heliconia. This represents ca. 75% of accepted species and includes coverage of all taxonomic subgenera and sections. We date this phylogeny using fossils associated with other families in the Zingiberales; in particular we review and evaluate the Eocene fossil Ensete oregonense. We use this dated phylogenetic framework to evaluate the evolution of two components of flower orientation that are hypothesized to be important for modulating pollinator discrimination and pollen placement: resupination and erect versus pendant inflorescence habit. Our phylogenetic results suggest that the monophyletic Melanesian subgenus Heliconiopsis and a small clade of Ecuadorian species are together the sister group to the rest of Heliconia. Extant diversity of Heliconia originated in the Late Eocene (39 Ma) with rapid diversification through the Early Miocene, making it the oldest known clade of hummingbird-pollinated plants. Most described subgenera and sections are not monophyletic, though closely related groups of species, often defined by shared geography, mirror earlier morphological cladistic analyses. Evaluation of changes in resupination and inflorescence habit suggests that these characters are more homoplasious than expected, and this largely explains the non-monophyly of previously circumscribed subgenera, which were based on these characters. We also find strong evidence for the correlated evolution of resupination and inflorescence habit. The correlated model suggests that the most recent common ancestor of all extant Heliconia had resupinate flowers and erect inflorescences. Finally, we note our nearly complete species sampling and dated phylogeny allow for an assessment of taxonomic history in terms of phylogenetic diversity. We find approximately half of the currently recognized species, corresponding to half of the phylogenetic diversity, have been described since 1975, highlighting the continued importance of basic taxonomic research and conservation initiatives to preserve both described and undiscovered species of Heliconia

    Comparative analysis of whole flower transcriptomes in the Zingiberales

    Get PDF
    The advancement of next generation sequencing technologies (NGS) has revolutionized our ability to generate large quantities of data at a genomic scale. Despite great challenges, these new sequencing technologies have empowered scientists to explore various relevant biological questions on non-model organisms, even in the absence of a complete sequenced reference genome. Here, we analyzed whole flower transcriptome libraries from exemplar species across the monocot order Zingiberales, using a comparative approach in order to gain insight into the evolution of the molecular mechanisms underlying flower development in the group. We identified 4,153 coding genes shared by all floral transcriptomes analyzed, and 1,748 genes that are only retrieved in the Zingiberales. We also identified 666 genes that are unique to the ginger lineage, and 2,001 that are only found in the banana group, while in the outgroup species Dichorisandra thyrsiflora J.C. Mikan (Commelinaceae) we retrieved 2,686 unique genes. It is possible that some of these genes underlie lineage-specific molecular mechanisms of floral diversification. We further discuss the nature of these lineage-specific datasets, emphasizing conserved and unique molecular processes with special emphasis in the Zingiberales. We also briefly discuss the strengths and shortcomings of de novo assembly for the study of developmental processes across divergent taxa from a particular order. Although this comparison is based exclusively on coding genes, with particular emphasis in transcription factors, we believe that the careful study of other regulatory mechanisms, such as non-coding RNAs, might reveal new levels of complexity, which were not explored in this work

    Mitochondrial Data in Monocot Phylologenetics

    Get PDF
    Mitochondrial sequences are an important source of data in animal phylogenetics, equivalent in importance to plastid sequences in plants. However, in recent years plant systematists have begun exploring the mitochondrial genome as a source of phylogenetically useful characters. The plant mitochondrial genome is renowned for its variability in size, structure, and gene organization, but this need not be of concern for the application of sequence data in phylogenetics. However, the incorporation of reverse transcribed mitochondrial genes ( processed paralogs ) and the recurring transfer of genes from the mitochondrion to the nucleus are evolutionary events that must be taken into account. RNA editing of mitochondrial genes is sometimes considered a problem in phylogenetic reconstruction, but we regard it only as a mechanism that may increase variability at edited sites and change the codon position bias accordingly. Additionally, edited sites may prove a valuable tool in identifying processed paralogs. An overview of genes and sequences used in phylogenetic studies of angiosperms is presented. In the monocots, a large amount of mitochondrial sequence data is being collected together with sequence data from plastid and nuclear genes, thus offering an opportunity to compare data from different genomic compartments. The mitochondrial and plastid data are incongruent when organelle gene trees are reconstructed. Possible reasons for the observed incongruence involve sampling of paralogous sequences and highly divergent substitution rates, potentially leading to longbranch attraction. The above problems are addressed in Acorales, Alismatales, Poales, Liliaceae, the Anthericum clade (in Agavaceae), and in some achlorophyllous taxa

    DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads

    Get PDF
    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants
    • …
    corecore