4 research outputs found

    Plasmodium parasite proteins and the infected erythrocyte.

    Full text link
    Erythrocyte modification by malaria proteins is linked to both disease severity and infection. In this issue of Trends in Parasitology, Templeton and Deitsch, and Horrocks and Muhia discuss recent work identifying a host-targeting (HT) signal on malaria proteins. This signal predicts a secretome of 300-400 effectors for the human malaria parasite Plasmodium falciparum, vastly expanding the number of potential vaccine and drug targets. The HT signal seems to be distinct from known cellular transport signals, which suggests that it might be a novel eukaryotic secretion signal.</p

    Common infection strategies of pathogenic eukaryotes.

    Full text link
    Pathogenic eukaryotes belong to several distinct phylogenetic lineages and have evolved the ability to colonize a range of hosts, including animals and plants. Pathogenic lifestyles have evolved repeatedly in eukaryotes, indicating that unique molecular processes are involved in host infection. However, evidence is now emerging that divergent eukaryotic pathogens might share common mechanisms of pathogenicity. The results from recent studies demonstrate that Plasmodium falciparum and Phytophthora infestans use equivalent host-targeting signals to deliver virulence adhesins and avirulence gene products into human and plant cells, respectively. Remodelling of host cells by different eukaryotic pathogens might therefore share some common features.</p

    An erythrocyte vesicle protein exported by the malaria parasite promotes tubovesicular lipid import from the host cell surface.

    Full text link
    Plasmodium falciparum is the protozoan parasite that causes the most virulent of human malarias. The blood stage parasites export several hundred proteins into their host erythrocyte that underlie modifications linked to major pathologies of the disease and parasite survival in the blood. Unfortunately, most are 'hypothetical' proteins of unknown function, and those that are essential for parasitization of the erythrocyte cannot be 'knocked out'. Here, we combined bioinformatics and genome-wide expression analyses with a new series of transgenic and cellular assays to show for the first time in malaria parasites that microarray read out from a chemical perturbation can have predictive value. We thereby identified and characterized an exported P. falciparum protein resident in a new vesicular compartment induced by the parasite in the erythrocyte. This protein, named Erythrocyte Vesicle Protein 1 (EVP1), shows novel dynamics of distribution in the parasite and intraerythrocytic membranes. Evidence is presented that its expression results in a change in TVN-mediated lipid import at the host membrane and that it is required for intracellular parasite growth, but not invasion. This exported protein appears to be needed for the maintenance of an essential tubovesicular nutrient import pathway induced by the pathogen in the host cell. Our approach may be generalized to the analysis of hundreds of 'hypothetical' P. falciparum proteins to understand their role in parasite entry and/or growth in erythrocytes as well as phenotypic contributions to either antigen export or tubovesicular import. By functionally validating these unknowns, one may identify new targets in host-microbial interactions for prophylaxis against this major human pathogen.</p

    The malaria secretome: from algorithms to essential function in blood stage infection.

    Full text link
    The malaria agent Plasmodium falciparum is predicted to export a "secretome" of several hundred proteins to remodel the host erythrocyte. Prediction of protein export is based on the presence of an ER-type signal sequence and a downstream Host-Targeting (HT) motif (which is similar to, but distinct from, the closely related Plasmodium Export Element [PEXEL]). Previous attempts to determine the entire secretome, using either the HT-motif or the PEXEL, have yielded large sets of proteins, which have not been comprehensively tested. We present here an expanded secretome that is optimized for both P. falciparum signal sequences and the HT-motif. From the most conservative of these three secretome predictions, we identify 11 proteins that are preserved across human- and rodent-infecting Plasmodium species. The conservation of these proteins likely indicates that they perform important functions in the interaction with and remodeling of the host erythrocyte important for all Plasmodium parasites. Using the piggyBac transposition system, we validate their export and find a positive prediction rate of approximately 70%. Even for proteins identified by all secretomes, the positive prediction rate is not likely to exceed approximately 75%. Attempted deletions of the genes encoding the conserved exported proteins were not successful, but additional functional analyses revealed the first conserved secretome function. This gave new insight into mechanisms for the assembly of the parasite-induced tubovesicular network needed for import of nutrients into the infected erythrocyte. Thus, genomic screens combined with functional assays provide unexpected and fundamental insights into host remodeling by this major human pathogen.</p
    corecore