5 research outputs found

    Dopamine-induced Exocytosis of Na,K-ATPase Is Dependent on Activation of Protein Kinase C-ε and -δ

    No full text
    The purpose of this study was to define mechanisms by which dopamine (DA) regulates the Na,K-ATPase in alveolar epithelial type 2 (AT2) cells. The Na,K-ATPase activity increased by twofold in cells incubated with either 1 μM DA or a dopaminergic D(1) agonist, fenoldopam, but not with the dopaminergic D(2) agonist quinpirole. The increase in activity paralleled an increase in Na,K-ATPase α1 and β1 protein abundance in the basolateral membrane (BLM) of AT2 cells. This increase in protein abundance was mediated by the exocytosis of Na,K-pumps from late endosomal compartments into the BLM. Down-regulation of diacylglycerol-sensitive types of protein kinase C (PKC) by pretreatment with phorbol 12-myristate 13-acetate or inhibition with bisindolylmaleimide prevented the DA-mediated increase in Na,K-ATPase activity and exocytosis of Na,K-pumps to the BLM. Preincubation of AT2 cells with either 2-[1-(3-dimethylaminopropyl)-5-methoxyindol-3-yl]-3-(1H-indol-3-yl)maleimide (Gö6983), a selective inhibitor of PKC-δ, or isozyme-specific inhibitor peptides for PKC-δ or PKC-ε inhibited the DA-mediated increase in Na,K-ATPase. PKC-δ and PKC-ε, but not PKC-α or -β, translocated from the cytosol to the membrane fraction after exposure to DA. PKC-δ– and PKC-ε–specific peptide agonists increased Na,K-ATPase protein abundance in the BLM. Accordingly, dopamine increased Na,K-ATPase activity in alveolar epithelial cells through the exocytosis of Na,K-pumps from late endosomes into the basolateral membrane in a mechanism-dependent activation of the novel protein kinase C isozymes PKC-δ and PKC-ε

    Contributors

    No full text
    corecore