402 research outputs found
Fast Fourier Optimization: Sparsity Matters
Many interesting and fundamentally practical optimization problems, ranging
from optics, to signal processing, to radar and acoustics, involve constraints
on the Fourier transform of a function. It is well-known that the {\em fast
Fourier transform} (fft) is a recursive algorithm that can dramatically improve
the efficiency for computing the discrete Fourier transform. However, because
it is recursive, it is difficult to embed into a linear optimization problem.
In this paper, we explain the main idea behind the fast Fourier transform and
show how to adapt it in such a manner as to make it encodable as constraints in
an optimization problem. We demonstrate a real-world problem from the field of
high-contrast imaging. On this problem, dramatic improvements are translated to
an ability to solve problems with a much finer grid of discretized points. As
we shall show, in general, the "fast Fourier" version of the optimization
constraints produces a larger but sparser constraint matrix and therefore one
can think of the fast Fourier transform as a method of sparsifying the
constraints in an optimization problem, which is usually a good thing.Comment: 16 pages, 8 figure
Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed
Specific high contrast imaging instruments are mandatory to characterize
circumstellar disks and exoplanets around nearby stars. Coronagraphs are
commonly used in these facilities to reject the diffracted light of an observed
star and enable the direct imaging and spectroscopy of its circumstellar
environment. One important property of the coronagraph is to be able to work in
broadband light.
Among several proposed coronagraphs, the dual-zone phase mask coronagraph is
a promising solution for starlight rejection in broadband light. In this paper,
we perform the first validation of this concept in laboratory.
First, we recall the principle of the dual-zone phase mask coronagraph. Then,
we describe the high-contrast imaging THD testbed, the manufacturing of the
components and the quality-control procedures. Finally, we study the
sensitivity of our coronagraph to low-order aberrations (inner working angle
and defocus) and estimate its contrast performance. Our experimental broadband
light results are compared with numerical simulations to check agreement with
the performance predictions.
With the manufactured prototype and using a dark hole technique based on the
self-coherent camera, we obtain contrast levels down to between 5
and 17 in monochromatic light (640 nm). We also reach contrast
levels of between 7 and 17 in broadband
( nm, nm and %), which demonstrates the excellent chromatic performance of the dual-zone
phase mask coronagraph.
The performance reached by the dual-zone phase mask coronagraph is promising
for future high-contrast imaging instruments that aim at detecting and
spectrally characterizing old or light gaseous planets.Comment: 9 pages, 16 figure
Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures
In the context of high dynamic range imaging, this study presents a
breakthrough for the understanding of Apodized Pupil Lyot Coronagraphs, making
them available for arbitrary aperture shapes. These new solutions find
immediate application in current, ground-based coronagraphic studies (Gemini,
VLT) and in existing instruments (AEOS Lyot Project). They also offer the
possiblity of a search for an on-axis design for TPF. The unobstructed aperture
case has already been solved by Aime et al. (2002) and Soummer et al. (2003).
Analytical solutions with identical properties exist in the general case and,
in particular, for centrally obscured apertures. Chromatic effects can be
mitigated with a numerical optimization. The combination of analytical and
numerical solutions enables the study of the complete parameter space (central
obstruction, apodization throughput, mask size, bandwidth, and Lyot stop size).Comment: 7 pages 4 figures - ApJL, accepte
Adaptive optics in high-contrast imaging
The development of adaptive optics (AO) played a major role in modern
astronomy over the last three decades. By compensating for the atmospheric
turbulence, these systems enable to reach the diffraction limit on large
telescopes. In this review, we will focus on high contrast applications of
adaptive optics, namely, imaging the close vicinity of bright stellar objects
and revealing regions otherwise hidden within the turbulent halo of the
atmosphere to look for objects with a contrast ratio lower than 10^-4 with
respect to the central star. Such high-contrast AO-corrected observations have
led to fundamental results in our current understanding of planetary formation
and evolution as well as stellar evolution. AO systems equipped three
generations of instruments, from the first pioneering experiments in the
nineties, to the first wave of instruments on 8m-class telescopes in the years
2000, and finally to the extreme AO systems that have recently started
operations. Along with high-contrast techniques, AO enables to reveal the
circumstellar environment: massive protoplanetary disks featuring spiral arms,
gaps or other asymmetries hinting at on-going planet formation, young giant
planets shining in thermal emission, or tenuous debris disks and micron-sized
dust leftover from collisions in massive asteroid-belt analogs. After
introducing the science case and technical requirements, we will review the
architecture of standard and extreme AO systems, before presenting a few
selected science highlights obtained with recent AO instruments.Comment: 24 pages, 14 figure
Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes
Less than 3% of the known exoplanets were directly imaged for two main
reasons. They are angularly very close to their parent star, which is several
magnitudes brighter. Direct imaging of exoplanets thus requires a dedicated
instrumentation with large telescopes and accurate wavefront control devices
for high-angular resolution and coronagraphs for attenuating the stellar light.
Coronagraphs are usually chromatic and they cannot perform high-contrast
imaging over a wide spectral bandwidth. That chromaticity will be critical for
future instruments. Enlarging the coronagraph spectral range is a challenge for
future exoplanet imaging instruments on both space-based and ground-based
telescopes. We propose the multi-stage four-quadrant phase mask that associates
several monochromatic four-quadrant phase mask coronagraphs in series.
Monochromatic device performance has already been demonstrated and the
manufacturing procedures are well-under control since their development for
previous instruments on VLT and JWST. The multi-stage implementation simplicity
is thus appealing. We present the instrument principle and we describe the
laboratory performance for large spectral bandwidths and for both pupil shapes
for space- (off-axis telescope) and ground-based (E-ELT) telescopes. The
multi-stage four-quadrant phase mask reduces the stellar flux over a wide
spectral range (30%) and it is a very good candidate to be associated with a
spectrometer for future exoplanet imaging instruments in ground- and
space-based observatories.Comment: 7 pages, 11 figures, 4 tables, accepted in A&
The Solar-System-Scale Disk Around AB Aurigae
The young star AB Aurigae is surrounded by a complex combination of gas-rich
and dust dominated structures. The inner disk which has not been studied
previously at sufficient resolution and imaging dynamic range seems to contain
very little gas inside a radius of least 130 astronomical units (AU) from the
star. Using adaptive-optics coronagraphy and polarimetry we have imaged the
dust in an annulus between 43 and 302 AU from the star, a region never seen
before. An azimuthal gap in an annulus of dust at a radius of 102 AU, along
with a clearing at closer radii inside this annulus, suggests the formation of
at least one small body at an orbital distance of about 100 AU. This structure
seems consistent with crude models of mean motion resonances, or accumulation
of material at two of the Lagrange points relative to the putative object and
the star. We also report a low significance detection of a point source in this
outer annulus of dust. This source may be an overdensity in the disk due to
dust accreting onto an unseen companion. An alternate interpretation suggests
that the object's mass is between 5 and 37 times the mass of Jupiter. The
results have implications for circumstellar disk dynamics and planet formation.Comment: 11 pages, 5 figures, accepted for publication in Astrophysical
Journal, V. 680, June 10, 200
The Lyot Project Direct Imaging Survey of Substellar Companions: Statistical Analysis and Information from Nondetections
The Lyot project used an optimized Lyot coronagraph with Extreme Adaptive
Optics at the 3.63m Advanced Electro-Optical System telescope (AEOS) to observe
86 stars from 2004 to 2007. In this paper we give an overview of the survey
results and a statistical analysis of the observed nondetections around 58 of
our targets to place constraints on the population of substellar companions to
nearby stars. The observations did not detect any companion in the substellar
regime. Since null results can be as important as detections, we analyzed each
observation to determine the characteristics of the companions that can be
ruled out. For this purpose we use a Monte Carlo approach to produce artificial
companions, and determine their detectability by comparison with the
sensitivity curve for each star. All the non-detection results are combined
using a Bayesian approach and we provide upper limits on the population of
giant exoplanets and brown dwarfs for this sample of stars. Our nondetections
confirm the rarity of brown dwarfs around solar-like stars and we constrain the
frequency of massive substellar companions (M>40Mjup) at orbital separation
between and 10 and 50 AU to be <20%.Comment: 32 pages, 11 figures, 2 tables. Published in the Astrophysical
Journa
- …