210 research outputs found

    DETERMINATION OF LINEAR AND NONLINEAR ROLL DAMPING COEFFICIENTS OF A SHIP SECTION USING CFD

    Get PDF
    The most prevalently used method to obtain the nonlinear roll damping coefficient is the free roll decay test. However, this method can only be conducted at the resonance frequency and thus cannot consider the effect of the frequency. This is a certain limitation as the resonance frequency can be changed at any time by the ship’s loading conditions. Therefore, it is worth investigating the frequency dependency of the nonlinear roll damping coefficients. In this study, a numerical method was proposed to derive the linear and nonlinear roll damping coefficients of ships at different frequencies. Fully nonlinear CFD simulations of forced harmonic roll motion were conducted and the roll damping coefficients were calculated. Then, the damping coefficients were decomposed into the linear and nonlinear components using the linear regression analysis. The linear roll damping coefficients were compared with potential coefficients and showed a good agreement, while the nonlinear roll damping coefficients were compared with the coefficients calculated using a semi-empirical method. The nonlinear roll damping coefficients calculated from the proposed method showed a strong frequency dependency. Finally, possible rationales for the frequency dependence of the nonlinear roll damping coefficient were investigated

    Electrically tunable birefringence of a polymer composite with long-range orientational ordering of liquid crystals

    Get PDF
    We report an optical film with electrically tunable birefringence in which the liquid crystals (LCs), mixed with the host polymer, form longrange ordering. The film was prepared through polymerization without phase separation between the LCs and polymers. Driving voltage below 30 V for full switching of birefringence is achieved in a 6 μm-thick film. Electro-optical investigations for the film suggest that the long-range ordering of the LCs mixed in the film caused by polymerization lead to rotations of the LCs as well as optical anisotropy in the film. These films with electrically tunable birefringence could have applications as flexible light modulators and phase retardation films for 2D-3D image switching. © 2014 Optical Society of America.1

    Electroluminescent devices with function of electro-optic shutter

    Get PDF
    The polymer-dispersed liquid crystal (PDLC) was used as a dielectric layer of electroluminescent (EL) device to provide multi-function of electroluminescence and electro-optic shutter. A 50 μm-thick PDLC layer was formed between a transparent electrode and a ZnS:Cu phosphor layer. The electro-optic properties of the EL device were not distorted by the introduction of the PDLC layer. The extraction efficiency of luminescence was improved by more than 14% by PDLC layer. The transmittance of the PDLC was also founded not to be degraded significantly by excitation frequency. Therefore, the electroluminescence of the device was ignited by excitation frequency at a given voltage for full transparency of the PDLC. This device has great potential for applications in transparent displays with the function of a privacy window. © 2012 Optical Society of America.1

    Luminance enhancement of electroluminescent devices using highly dielectric UV-curable polymer and oxide nanoparticle composite

    Get PDF
    A flexible hybrid structure electroluminescent (HSEL) device was fabricated from ZnS:Cu phosphor microparticles dispersed in a UVcurable polymer matrix. We observed a maximum luminance of 111 cd/m2 at 10 kHz and 170 V from a device wherein the mixing ratio between the phosphor particles and highly dielectric polymer binder was 70:30 wt%. Furthermore, by uniformly dispersing highly dielectric BaTiO3 nanoparticles within the polymer matrix, we were able to obtain a luminance of up to 211 cd/m2 in the HSEL device. Compared to the conventional thermal curing process, this UV process greatly simplifies the fabrication steps by combining phosphors and dielectric materials at room temperature. This process also demonstrates a promising pathway toward creating flexible and printed EL devices in the future. © 2014 Optical Society of America.1

    Bidirectional two colored light emission from stress-activated ZnS-microparticles-embedded polydimethylsiloxane elastomer films

    Get PDF
    Bidirectional two-colored mechanoluminescent light emission has been demonstrated by unifying two polydimethylsiloxane elastomer layers functionalized with zinc sulfide doped with Cu (ZnS:Cu) or Cu and Mn (ZnS:Cu,Mn). The bilayered composite films are simply fabricated by dispensing uncured ZnS:Cu,Mn + PDMS onto previously spin-coated and ardened ZnS:Cu + PDMS film. The robust PDMS-PDMS bonding yields a ilm which can simultaneously emit light with color coordinates of (0.25, 0.56) and (0.50, 0.48), similar to the intrinsic colors of ZnS:Cu and ZnS:Cu,Mn, respectively. Composite films can emit light in upper and lower directions without fracture when it is stretched. © 2013 Optical Society of America.1

    MOMENT RESISTANCE PERFORMANCE OF LARCH LAMINATED TIMBER BEAM-COLUMN JOINTS REINFORCED WITH CFRP

    Get PDF
    This study evaluates the moment resisting capacity of the drift pin larch beam-column joint with slotted-in steel plates of larch laminated timber. It is reinforced with carbon fiber reinforced plastic (CFRP) to suppress the brittle fracture of the beam-column joint and improve the joint capacity using larch laminated timber, a wood material manufactured by multi-layering of timber as a structural member of heavy timber.The average maximum moment capacity of the control specimen was 16.9 kN·m and the average maximum moments of the Type-A (volume ratio of joint reinforced with CFRP: 3.6%) and Type-B (volume ratio of joint reinforced with CFRP: 5.4%) were increased by 46% and 62%, respectively, compared to that of the control specimen. The capacity of the joint, such as the average yield capacity, ultimate moment capacity, and ductility ratio, of the control, Type-A, and Type-B specimens increased as the reinforcement ratio of the CFRP increased. For the failure mode of the control specimen, splitting failure occurred in both the column and beam members in the end distance direction. However, the splitting failure did not occur in the beam member due to the improvement of the joint and ductility of the specimens reinforced with the CFRP. The Type-A specimen had improved joint capacity and ductility compared to the control specimen; however, brittle failure occurred owing to the external force exceeding the joint capacity. However, in some of the Type-B specimens, the splitting failure did not occur in the column and beam members due to the CFRP reinforcement. Particularly, the Type-B3 specimen exhibited ductility

    Late diagnosis of medial condyle fracture of the humerus with rotational displacement in a child

    Get PDF
    For displaced medial condyle fractures in children, open reduction with internal fixation seems to be most popular treatment method. The major complication of this method is failure to make the proper early diagnosis. Corrective supracondylar humeral osteotomy has been preferred to open reduction and internal fixation for managing malunited fragments. We report a case of a child with nonunion of the medial condyle of the humerus who was subsequently treated successfully with open reduction and internal fixation
    corecore