342 research outputs found
Recommended from our members
Preferential killing of melanoma cells by a p16-related peptide.
We report the identification of a synthetic, cell-penetrating peptide able to kill human melanoma cells efficiently and selectively, while less toxic to normal human melanocytes and nontoxic to human fibroblasts. The peptide is based on the target-binding site of the melanoma suppressor and senescence effector p16 (INK4A, CDKN2A), coupled to a cell-penetrating moiety. The killing is by apoptosis and appears to act by a route other than the canonical downstream target of p16 and CDK4, the retinoblastoma (RB) family, since it is also effective in HeLa cells and a melanocyte line expressing HPV E7 oncogenes, which both lack any active RB. There was varying toxicity to other types of cancer cell lines such as glioblastoma. Melanoma cell killing by a p16-derived peptide was reported once before but only at a higher concentration, while selectivity and generality were not previously tested
Composite Fermion Metals from Dyon Black Holes and S-Duality
We propose that string theory in the background of dyon black holes in
four-dimensional anti-de Sitter spacetime is holographic dual to conformally
invariant composite Dirac fermion metal. By utilizing S-duality map, we show
that thermodynamic and transport properties of the black hole match with those
of composite fermion metal, exhibiting Fermi liquid-like. Built upon
Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on
magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of
SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to
constituent fermions. Being at metallic point, the statistical magnetic flux is
interlocked to the background magnetic field. We find supporting evidences for
proposed holographic duality from study of internal energy of black hole and
probe bulk fermion motion in black hole background. They show good agreement
with ground-state energy of composite fermion metal in Thomas-Fermi
approximation and cyclotron motion of a constituent or composite fermion
excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised
version to be published in JHE
Tin doped indium oxide core-TiO <inf>2</inf> shell nanowires on stainless steel mesh for flexible photoelectrochemical cells
Photoanode architecture is built on highly conductive tin doped indium oxide (ITO) nanowires (NWs) on a flexible stainless steel mesh (SSM). ITO nanowires were coated with the atomic layer deposition grown TiO 2 layer and the photoelectrochemical performance of the stainless steel mesh based photoanode were examined as a function of wire-length and shell-thickness. The photoanode consisting of 20 m-long nanowire core and 36 nm thick shell increased the photocurrent of the testing cell by 4 times, compared to a reference cell. This enhanced photochemical activity is attributed to higher light harvesting efficiency of nanowire arrays and suppressed charge recombination of core-shell structure. © 2012 American Institute of Physics
Exact Results and Holography of Wilson Loops in N=2 Superconformal (Quiver) Gauge Theories
Using localization, matrix model and saddle-point techniques, we determine
exact behavior of circular Wilson loop in N=2 superconformal (quiver) gauge
theories. Focusing at planar and large `t Hooft couling limits, we compare its
asymptotic behavior with well-known exponential growth of Wilson loop in N=4
super Yang-Mills theory. For theory with gauge group SU(N) coupled to 2N
fundamental hypermultiplets, we find that Wilson loop exhibits non-exponential
growth -- at most, it can grow a power of `t Hooft coupling. For theory with
gauge group SU(N) x SU(N) and bifundamental hypermultiplets, there are two
Wilson loops associated with two gauge groups. We find Wilson loop in untwisted
sector grows exponentially large as in N=4 super Yang-Mills theory. We then
find Wilson loop in twisted sector exhibits non-analytic behavior with respect
to difference of two `t Hooft coupling constants. By letting one gauge coupling
constant hierarchically larger/smaller than the other, we show that Wilson
loops in the second type theory interpolate to Wilson loop in the first type
theory. We infer implications of these findings from holographic dual
description in terms of minimal surface of dual string worldsheet. We suggest
intuitive interpretation that in both type theories holographic dual background
must involve string scale geometry even at planar and large `t Hooft coupling
limit and that new results found in the gauge theory side are attributable to
worldsheet instantons and infinite resummation therein. Our interpretation also
indicate that holographic dual of these gauge theories is provided by certain
non-critical string theories.Comment: 52 pages, 7 figures v2. more figures embedded v3. minor stylistic
changes, v4. published versio
Insights from Amphioxus into the Evolution of Vertebrate Cartilage
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm
Comparative analysis of sequence characteristics of imprinted genes in human, mouse, and cattle
Genomic imprinting is an epigenetic mechanism that results in monoallelic expression of genes depending on parent-of-origin of the allele. Although the conservation of genomic imprinting among mammalian species has been widely reported for many genes, there is accumulating evidence that some genes escape this conservation. Most known imprinted genes have been identified in the mouse and human, with few imprinted genes reported in cattle. Comparative analysis of genomic imprinting across mammalian species would provide a powerful tool for elucidating the mechanisms regulating the unique expression of imprinted genes. In this study we analyzed the imprinting of 22 genes in human, mouse, and cattle and found that in only 11 was imprinting conserved across the three species. In addition, we analyzed the occurrence of the sequence elements CpG islands, C + G content, tandem repeats, and retrotransposable elements in imprinted and in nonimprinted (control) cattle genes. We found that imprinted genes have a higher G + C content and more CpG islands and tandem repeats. Short interspersed nuclear elements (SINEs) were notably fewer in number in imprinted cattle genes compared to control genes, which is in agreement with previous reports for human and mouse imprinted regions. Long interspersed nuclear elements (LINEs) and long terminal repeats (LTRs) were found to be significantly underrepresented in imprinted genes compared to control genes, contrary to reports on human and mouse. Of considerable significance was the finding of highly conserved tandem repeats in nine of the genes imprinted in all three species
Radiation Impairs Perineural Invasion by Modulating the Nerve Microenvironment
Perineural invasion (PNI) by cancer cells is an ominous clinical event that is associated with increased local recurrence and poor prognosis. Although radiation therapy (RT) may be delivered along the course of an invaded nerve, the mechanisms through which radiation may potentially control PNI remain undefined. murine sciatic nerve model was used to study how RT to nerve or cancer affects nerve invasion by cancer.Cancer cell invasion of the DRG was partially dependent on DRG secretion of glial-derived neurotrophic factor (GDNF). A single 4 Gy dose of radiation to the DRG alone, cultured with non-radiated cancer cells, significantly inhibited PNI and was associated with decreased GDNF secretion but intact DRG viability. Radiation of cancer cells alone, co-cultured with non-radiated nerves, inhibited PNI through predominantly compromised cancer cell viability. In a murine model of PNI, a single 8 Gy dose of radiation to the sciatic nerve prior to implantation of non-radiated cancer cells resulted in decreased GDNF expression, decreased PNI by imaging and histology, and preservation of sciatic nerve motor function.Radiation may impair PNI through not only direct effects on cancer cell viability, but also an independent interruption of paracrine mechanisms underlying PNI. RT modulation of the nerve microenvironment may decrease PNI, and hold significant therapeutic implications for RT dosing and field design for patients with cancers exhibiting PNI
The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats
<p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells are widely used for transplantation into the injured spinal cord in vivo model and for safety, many human clinical trials are continuing to promote improvements of motor and sensory functions after spinal cord injury. Yet the exact mechanism for these improvements remains undefined. Neurogenic bladder following spinal cord injury is the main problem decreasing the quality of life for patients with spinal cord injury, but there are no clear data using stem cell transplantation for the improvement of neurogenic bladder for in vivo studies and the clinical setting.</p> <p>The purpose of this study was to delineate the effect of human mesenchymal stem cell (hMSCs) transplantation on the restoration of neurogenic bladder and impaired hindlimb function after spinal cord contusion of rats and the relationship between neurotrophic factors such as brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and bladder and hindlimb functions.</p> <p>Results</p> <p>Modified moderate contusion injury were performed on the thoracic spinal cord of Sprague-Dawley rats using MASCIS impactor and hMSCs, human fibroblasts or phosphate-buffered saline were transplanted into injured spinal cord 9 days after injury for hMSC and two control groups respectively. Ladder test showed more rapid restoration of hindlimb function in hMSC group than in control group, but Basso, Beattie, and Bresnahan score and coupling score were not different significantly among hMSC and two control groups. Neurogenic bladder was not improved in either group. ED1 positive macrophages were significantly reduced in hMSC group than in two control groups, but ELISA and RT-PCR studies revealed BDNF and NT-3 levels in spinal cord and bladder were not different among hMSC and two control groups regardless the experimental duration.</p> <p>Conclusion</p> <p>hMSC transplantation was effective in reducing inflammatory reaction after spinal cord contusion of rats but not sufficient to recover locomotor and bladder dysfunction. BDNF and NT-3 levels in the spinal cord and bladder were not increased 28 and 56 days after hMSC transplantation.</p
Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells
<p>Abstract</p> <p>Background</p> <p>The Akt/PKB family of kinases is frequently activated in human cancers, including oral squamous cell carcinoma (OSCC). Akt-induced epithelial-to-mesenchymal transition (EMT) involves downregulation of E-cadherin, which appears to result from upregulation of the transcription repressor Snail. Recently, it was proposed that carcinoma cells, especially in metastatic sites, could acquire the mesenchymal-to-epithelial reverting transition (MErT) in order to adapt the microenvironments and re-expression of E-cadherin be a critical indicator of MErT. However, the precise mechanism and biologic or clinical importance of the MErT in cancers have been little known. This study aimed to investigate whether Akt inhibition would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in OSCC cells with low or negative expression of E-cadherin. We also investigate whether inhibition of Akt activity would affect the E-cadherin repressors and signaling molecules like NF-κB, ERK, and p38.</p> <p>Methods</p> <p>We screened several OSCC cell lines in order to select suitable cell line models for inducing MErT, using immunoblotting and methylation specific-PCR. We examined whether Akt inhibitor phosphatidylinositol ether lipid analogues (PIA) treatment would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in KB and KOSCC-25B cells using RT-PCR, immunoblotting, immunofluorescence analysis, and <it>in vitro </it>migration assay. We also investigated whether inhibition of Akt activity would affect the E-cadherin repressors, including Snail, Twist, and SIP-1/ZEB-2 and signaling molecules like NF-κB, ERK, JNK, and p38 using RT-PCR, immunoblotting, and immunofluorescence analysis.</p> <p>Results</p> <p>Of the 7 OSCC cell lines, KB and KOSCC-25B showed constitutively activated phosphorylated Akt and low or negative expression of E-cadherin. Inhibition of Akt activity by PIA decreased NF-κB signaling, but did not affect phosphorylation of ERK, JNK, and p38 in KB and KOSCC-25B cells. Akt inhibition led to downregulation of Snail and Twist expression. In contrast, inhibition of Akt activity by PIA did not induce any changes in SIP-1/ZEB-2 expression. PIA treatment induced the expression of E-cadherin and β-catenin, reduce that of Vimentin, restored their epithelial morphology of a polygonal shape, and reduced tumor cell migration in KB and KOSCC-25B cells, which was the corresponding feature of MErT.</p> <p>Conclusion</p> <p>All of these findings suggest that Akt inhibition could induce the MErT through decreased NF-κB signaling and downregulation of Snail and Twist in OSCC cells. A strategy involving Akt inhibition might be a useful therapeutic tool in controlling cancer dissemination and metastasis in oral cancer patients.</p
- …