5,978 research outputs found
Sample Approximation-Based Deflation Approaches for Chance SINR Constrained Joint Power and Admission Control
Consider the joint power and admission control (JPAC) problem for a
multi-user single-input single-output (SISO) interference channel. Most
existing works on JPAC assume the perfect instantaneous channel state
information (CSI). In this paper, we consider the JPAC problem with the
imperfect CSI, that is, we assume that only the channel distribution
information (CDI) is available. We formulate the JPAC problem into a chance
(probabilistic) constrained program, where each link's SINR outage probability
is enforced to be less than or equal to a specified tolerance. To circumvent
the computational difficulty of the chance SINR constraints, we propose to use
the sample (scenario) approximation scheme to convert them into finitely many
simple linear constraints. Furthermore, we reformulate the sample approximation
of the chance SINR constrained JPAC problem as a composite group sparse
minimization problem and then approximate it by a second-order cone program
(SOCP). The solution of the SOCP approximation can be used to check the
simultaneous supportability of all links in the network and to guide an
iterative link removal procedure (the deflation approach). We exploit the
special structure of the SOCP approximation and custom-design an efficient
algorithm for solving it. Finally, we illustrate the effectiveness and
efficiency of the proposed sample approximation-based deflation approaches by
simulations.Comment: The paper has been accepted for publication in IEEE Transactions on
Wireless Communication
- …