26,422 research outputs found

    Pointwise convergence of multiple ergodic averages and strictly ergodic models

    Full text link
    By building some suitable strictly ergodic models, we prove that for an ergodic system (X,X,ΞΌ,T)(X,\mathcal{X},\mu, T), d∈Nd\in{\mathbb N}, f1,…,fd∈L∞(ΞΌ)f_1, \ldots, f_d \in L^{\infty}(\mu), the averages 1N2βˆ‘(n,m)∈[0,Nβˆ’1]2f1(Tnx)f2(Tn+mx)…fd(Tn+(dβˆ’1)mx)\frac{1}{N^2} \sum_{(n,m)\in [0,N-1]^2} f_1(T^nx)f_2(T^{n+m}x)\ldots f_d(T^{n+(d-1)m}x) converge ΞΌ\mu a.e. Deriving some results from the construction, for distal systems we answer positively the question if the multiple ergodic averages converge a.e. That is, we show that if (X,X,ΞΌ,T)(X,\mathcal{X},\mu, T) is an ergodic distal system, and f1,…,fd∈L∞(ΞΌ)f_1, \ldots, f_d \in L^{\infty}(\mu), then multiple ergodic averages 1Nβˆ‘n=0Nβˆ’1f1(Tnx)…fd(Tdnx)\frac 1 N\sum_{n=0}^{N-1}f_1(T^nx)\ldots f_d(T^{dn}x) converge ΞΌ\mu a.e.Comment: 35 pages, revised version following referees' report
    • …
    corecore