1,801 research outputs found

    Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    Get PDF
    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavior on superhydrophobic surfaces is influenced by surface topography and polymer type. Biomimetic superhydrophobic rough surfaces of polystyrene and poly(l-lactic acid) with different micro/nanotopographies were obtained from smooth surfaces using a simple phase-separation based method. Total protein was quantified and showed a less adsorption of bovine serum albumin onto rough surfaces as compared to smooth surfaces of the same material. The mouse osteoblastic MC3T3-E1 cell line and primary bovine articular chondrocytes were used to study cell attachment and proliferation. Cells attached and proliferate better in the smooth surfaces. The superhydrophobic surfaces allowed cells to adhere but inhibited their proliferation. This study indicates that surface wettability, rather than polymer type or the topography of the superhydrophobic surfaces, is a critical factor in determining cell behavior

    A geometric approach to time evolution operators of Lie quantum systems

    Full text link
    Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.Comment: Accepted for publication in the International Journal of Theoretical Physic

    Interplay of Three-Body Interactions in the EOS of Nuclear Matter

    Get PDF
    The equation of state of symmetric nuclear matter has been investigated within Brueckner approach adopting the charge-dependent Argonne V18V_{18} two-body force plus a microscopic three-body force based on a meson-exchange model. The effects on the equation of state of the individual processes giving rise to the three-body force are explored up to high baryonic density. It is found that the major role is played by the competition between the strongly repulsive (σ,ω)(\sigma, \omega) exchange term with virtual nucleon-antinucleon excitation and the large attractive contribution due to (σ,ω)(\sigma, \omega) exchange with N(1440)N^*(1440) resonance excitation. The net result is a repulsive term which shifts the saturation density corresponding to the only two-body force much closer to the empirical value, while keeping constant the saturation energy per particle. The contribution from (π,ρ)(\pi, \rho) exchange 3BF is shown to be attractive and rather small. The analysis of the separate three-body force contributions allows to make a comparison with the prediction of Dirac-Brueckner approach which is supposed to incorporate via the {\it dressed} Dirac spinors the same virtual nucleon-antinucleon excitations as in the present three-body force. The numerical results suggest that the three-body force components missing from the Dirac-Brueckner approach are not negligible, especially at high density. The calculation of the nuclear mean field and the effective mass shows that the three-body force affects to a limited extent such properties.Comment: 12 pages 7 figure

    Effects of R-parity Violation on the Charged Higgs Boson Decays

    Full text link
    We calculate one-loop R-parity-violating couplings corrections to the processes HτντˉH^-\to \tau\bar{\nu_\tau} and HbtˉH^-\to b\bar{t}. We find that the corrections to the HτντˉH^-\to \tau\bar{\nu_\tau} decay mode are generally about 0.1%, and can be negligible. But the corrections to the HbtˉH^-\to b\bar{t} decay mode can reach a few percent for the favored parameters.Comment: 17 pages,6 figures. One type error in the title correcte

    Final State Interactions in D0K0K0ˉD^0 \to K^0 \bar{K^0}

    Full text link
    It is believed that the production rate of D0K0Kˉ0D^0\to K^0\bar K^0 is almost solely determined by final state interactions (FSI) and hence provides an ideal place to test FSI models. Here we examine model calculations of the contributions from s-channel resonance fJ(1710)f_J(1710) and t-channel exchange to the FSI effects in D0K0Kˉ0D^0\to K^0\bar K^0. The contribution from s-channel f0(1710)f_0(1710) is smaForthetchannelFSIevaluation,weemploytheoneparticleexchange(OPE)modelandReggemodelrespecti For the t-channel FSI evaluation, we employ the one-particle-exchange (OPE) model and Regge model respecti The results from two methods are roughly consistent with each other and can reproduce the large rate of D0K0Kˉ0D^0\to K^0\bar K^0 reasonably well$Comment: Latex, 16 pages, with 2 figure

    SU(4) Chiral Quark Model with Configuration Mixing

    Full text link
    Chiral quark model with configuration mixing and broken SU(3)\times U(1) symmetry has been extended to include the contribution from c\bar c fluctuations by considering broken SU(4) instead of SU(3). The implications of such a model have been studied for quark flavor and spin distribution functions corresponding to E866 and the NMC data. The predicted parameters regarding the charm spin distribution functions, for example, \Delta c, \frac{\Delta c}{{\Delta \Sigma}}, \frac{\Delta c}{c} as well as the charm quark distribution functions, for example, \bar c, \frac{2\bar c}{(\bar u+\bar d)}, \frac{2 \bar c}{(u+d)} and \frac{(c+ \bar c)}{\sum (q+\bar q)} are in agreement with other similar calculations. Specifically, we find \Delta c=-0.009, \frac{\Delta c}{{\Delta \Sigma}}=-0.02, \bar c=0.03 and \frac{(c+ \bar c)}{\sum (q+\bar q)}=0.02 for the \chiQM parameters a=0.1, \alpha=0.4, \beta=0.7, \zeta_{E866}=-1-2 \beta, \zeta_{NMC}=-2-2 \beta and \gamma=0.3, the latter appears due to the extension of SU(3) to SU(4).Comment: 10 RevTeX pages. Accepted for publication in Phys. Rev.

    Homodyne Bell's inequalities for entangled mesoscopic superpositions

    Full text link
    We present a scheme for demonstrating violation of Bell's inequalities using a spin-1/2 system entangled with a pair of classically distinguishable wave packets in a harmonic potential. In the optical domain, such wave packets can be represented by coherent states of a single light mode. The proposed scheme involves standard spin-1/2 projections and measurements of the position and the momentum of the harmonic oscillator system, which for a light mode can be realized by means of homodyne detection. We discuss effects of imperfections, including non-unit efficiency of the homodyne detector, and point out a close link between the visibility of interference and violation of Bell's inequalities in the described scheme.Comment: 6 pages, 3 figures. Extended version, journal reference adde

    A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes

    Full text link
    Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Fly's Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics Journa

    Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum

    Full text link
    We have measured the cosmic ray spectrum at energies above 101710^{17} eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near 3×10183\times 10^{18} eV, and strong evidence for a suppression near 6×10196\times 10^{19} eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio

    Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV

    Full text link
    Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs) consist of dipole distributions oriented towards major astrophysical landmarks such as the galactic center, M87, or Centaurus A. We use a comparison between real data and simulated data to show that the HiRes-I monocular data for energies above 10^{18.5} eV is, in fact, consistent with an isotropic source model. We then explore methods to quantify our sensitivity to dipole source models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure
    corecore