7 research outputs found
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
Seasonal Patterns of Greenland Ice Velocity From Sentinel-1 SAR Data Linked to Runoff
peer reviewedAccurate projections of the mass loss from the Greenland Ice Sheet (GrIS) require a complete understanding of the ice-dynamic response to climate forcings on seasonal and interannual timescales and would greatly benefit from more observational evidence. Here, we analyze a 5-year, high-resolution data set of ice velocities of the GrIS using K-means, an unsupervised clustering algorithm, to identify ice-sheet wide characteristic seasonal flow patterns. We include all areas flowing >0.3 m/d and obtain an ice-sheet wide overview of the seasonality and the interannual variability. It shows both a spatial and interannual variability in seasonal flow patterns, both along individual glaciers and between glaciers. We compare with runoff from a regional climate model and infer that the ice-sheet wide patterns are linked to the availability of water penetrating to the base of the ice
Experiences of young drivers and accompanying persons in Denmark : A qualitative study
The safety effect of accompanied driving depends on the level of practice and on compliance with restrictions. On January 1st 2017, Denmark introduced accompanied driving as a voluntary option from age 17 and after passing the national driving test. Up to age 18, driving is only allowed when supervised, but after the age of 18 unrestricted access to solo driving is automatically provided. This study investigates user experiences among young drivers (YDs) and accompanying persons (APs), and the impact on engagement and compliance. It uses a socio-ecological model (S-EM) as a framework to identify facilitators and constrainers, taking into account all social levels, from the individual to the legislative. Information was obtained through semi-structured telephone interviews with 28 YDs who had received their licences through L17, and 24 APs. Thematic analyses identified nine themes and 12 sub-themes operating at different levels of the social environment and associated with differences in engagement. Overall, the results suggest that leaving it to the participating YDs and APs to decide on the amount and type of accompanied driving may not achieve the intended safety benefit due to influence of unhelpful motivations, limited knowledge, mismatched expectations of YDs and APs, a limited amount of, and limited variation in, driving, and a lack of support and compliance with the unaccompanied driving ban. In conclusion, results suggest that a guided approach that addresses the barriers at different levels of the social environment is needed to optimise the safety effect of accompanied driving as a voluntary option.</p
Observationally constrained reconstruction of 19th to mid-20th century sea-ice extent off eastern Greenland
Arctic sea ice has a significant impact on the global radiation budget, oceanic and atmospheric circulation and the stability of the Greenland ice sheet (Vaughan et al. 2013). Prior to the era of aircraft and satellite, information on sea-ice extent relied on observations from ships and people living at the coast. This information is a valuable contribution to better understand the history of sea ice. However, the information exists in a range of formats, e.g., sea-ice extent before the late 1800s is typically reported in the literature as an annual index from a single geographical point or as hand-drawn maps. This makes it difficult to assess and compare data across time and space. The combination of digitised historical maps and single-point data makes the information more accessible and provides a record that can help understand the dynamics and processes of the climate and its interactions with the cryosphere (Chapman & Walsh 1993). In this study, maps of sea-ice extent by Koch (1945) were digitised. We use these maps in combination with sea-ice charts from the Danish Meteorological Institute (DMI) and Koch’s sea-ice index from 1820 to 1939, to map estimated sea-ice extent between Iceland and Greenland going back to 1821. This information has not been included in even the most recent databases of Arctic sea ice (Walsh et al. 2015, 2017). Furthermore, we extract time series of sea-ice extent at a number of locations and investigate the relationship between them. Our observation area is along eastern Greenland, between the southern tip of Greenland at 59°46´N northwards to 77°21´N