5,428 research outputs found

    Resonance Theory for Schroedinger Operators

    Full text link
    Resonances which result from perturbation of embedded eigenvalues are studied by time dependent methods. A general theory is developed, with new and weaker conditions, allowing for perturbations of threshold eigenvalues and relaxed Fermi Golden rule. The exponential decay rate of resonances is addressed; its uniqueness in the time dependent picture is shown is certain cases. The relation to the existence of meromorphic continuation of the properly weighted Green's function to time dependent resonance is further elucidated, by giving an equivalent time dependent asymptotic expansion of the solutions of the Schr\"odinger equation. \keywords{Resonances; Time-dependent Schr\"odinger equation

    Time Dependent Resonance Theory

    Full text link
    An important class of resonance problems involves the study of perturbations of systems having embedded eigenvalues in their continuous spectrum. Problems with this mathematical structure arise in the study of many physical systems, e.g. the coupling of an atom or molecule to a photon-radiation field, and Auger states of the helium atom, as well as in spectral geometry and number theory. We present a dynamic (time-dependent) theory of such quantum resonances. The key hypotheses are (i) a resonance condition which holds generically (non-vanishing of the {\it Fermi golden rule}) and (ii) local decay estimates for the unperturbed dynamics with initial data consisting of continuum modes associated with an interval containing the embedded eigenvalue of the unperturbed Hamiltonian. No assumption of dilation analyticity of the potential is made. Our method explicitly demonstrates the flow of energy from the resonant discrete mode to continuum modes due to their coupling. The approach is also applicable to nonautonomous linear problems and to nonlinear problems. We derive the time behavior of the resonant states for intermediate and long times. Examples and applications are presented. Among them is a proof of the instability of an embedded eigenvalue at a threshold energy under suitable hypotheses.Comment: to appear in Geometrical and Functional Analysi

    Nonautonomous Hamiltonians

    Full text link
    We present a theory of resonances for a class of non-autonomous Hamiltonians to treat the structural instability of spatially localized and time-periodic solutions associated with an unperturbed autonomous Hamiltonian. The mechanism of instability is radiative decay, due to resonant coupling of the discrete modes to the continuum modes by the time-dependent perturbation. This results in a slow transfer of energy from the discrete modes to the continuum. The rate of decay of solutions is slow and hence the decaying bound states can be viewed as metastable. The ideas are closely related to the authors' work on (i) a time dependent approach to the instability of eigenvalues embedded in the continuous spectra, and (ii) resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. The theory is applied to a general class of Schr\"odinger equations. The phenomenon of ionization may be viewed as a resonance problem of the type we consider and we apply our theory to find the rate of ionization, spectral line shift and local decay estimates for such Hamiltonians.Comment: To appear in Journal of Statistical Physic

    The wave equation on the Schwarzschild metric II: Local decay for the spin 2 Regge Wheeler equation

    Full text link
    Odd-type spin 2 perturbations of Einstein's equation can be reduced to the scalar Regge-Wheeler equation. We show that the weighted norms of solutions are in L^2 of time and space. This result uses commutator methods and applies uniformly to all relevant spherical harmonics.Comment: AMS-LaTeX, 8 pages with 1 figure. There is an errata to this paper at gr-qc/060807
    • …
    corecore