88 research outputs found

    Analysis of The Hipparcos Measurements of HD10697 - A Mass Determination of a Brown-Dwarf Secondary

    Get PDF
    HD10697 is a nearby main-sequence star around which a planet candidate has recently been discovered by means of radial-velocity measurements (Vogt et al. 1999, submitted to ApJ). The stellar orbit has a period of about three years, the secondary minimum mass is 6.35 Jupiter masses and the minimum semi-major axis is 0.36 milli-arc-sec (mas). Using the Hipparcos data of HD10697 together with the spectroscopic elements of Vogt et al. (1999) we found a semi-major axis of 2.1 +/- 0.7 mas, implying a mass of 38 +/- 13 Jupiter masses for the unseen companion. We therefore suggest that the secondary of HD10697 is probably a brown dwarf, orbiting around its parent star at a distance of 2 AU.Comment: 6 pages, 2 figures, LaTex, aastex, accepted for publication by ApJ Letter

    The change in the inclination angle of the non-eclipsing binary SS Lacertae: future eclipses

    Full text link
    Eclipses in the 14.4-day period double-lined binary SS Lac were observed photographically and visually early in the 20th century, but stopped some 50 or 60 years ago. This has been explained by the presence of a distant third star in the system, which has now been detected spectroscopically with a period of 679 days. The plane of the orbit of the binary is changing relative to the line of sight in response to perturbations from this third object. A recent analysis by Milone et al. (M00) of all photometric material available for the system, including a re-measurement of original Harvard plates, has confirmed earlier reports of changes in the depth of the eclipses as a function of time, which are due to the third star. In this paper we discuss our detailed analysis of the eclipse amplitude measurements, and extract from them information on the change in the inclination angle of the binary over the last century. Our use of a much improved ephemeris for the system by Torres & Stefanik was found to be crucial, and prompted us to re-determine all the amplitudes from the historical data at our disposal, including the Harvard material used by M00. Systematically lower measurements on the branches of the minima were properly accounted for, and we made use of both a linear approximation to the time variation of the inclination angle and a more realistic model based on the theory of three-body interactions ("regression of the nodes" effect). The nodal cycle is found to be about 600 yr, within which TWO eclipse "seasons" occur, each lasting about 100 yr. The non-eclipsing status of the system is expected to continue until the beginning of the 23rd century.Comment: 32 pages, including figures and tables. Accepted for The Astronomical Journal, April 200

    The High Eccentricity of the Planet Around 16 Cyg B

    Full text link
    We consider the high eccentricity, 0.66, of the newly discovered planet around 16 Cyg B, using the fact that the parent star is part of a wide binary. We show that the high eccentricity of the planet could be the result of tidal forces exerted on 16 Cyg B and its planet by 16 Cyg A, the distant companion in the system. By following stellar triple systems with parameters similar to those of 16 Cyg, we have established that the orbital eccentricity of the planet could have gone through strong modulation, with an amplitude of 0.8 or even larger, with typical timescale of tens of millions years. The amplitude of the planet eccentricity strongly depends on the relative inclination between the plane of motion of the planet and that of the wide binary 16 Cyg AB. To account for the present eccentricity of the planet we have to assume that the angle between the two planes of motion is large, at least 60 deg. We argue that this assumption is reasonable for wide binaries like 16 Cyg AB.Comment: 2 Figures, Latex, submitted for publication to ApJ

    The Triple Pulsar System PSR B1620-26 in M4

    Get PDF
    The millisecond pulsar PSR B1620-26, in the globular cluster M4, has a white dwarf companion in a half-year orbit. Anomalously large variations in the pulsar's apparent spin-down rate have suggested the presence of a second companion in a much wider orbit. Using timing observations made on more than seven hundred days spanning eleven years, we confirm this anomalous timing behavior. We explicitly demonstrate, for the first time, that a timing model consisting of the sum of two non-interacting Keplerian orbits can account for the observed signal. Both circular and elliptical orbits are allowed, although highly eccentric orbits require improbable orbital geometries. The motion of the pulsar in the inner orbit is very nearly a Keplerian ellipse, but the tidal effects of the outer companion cause variations in the orbital elements. We have measured the change in the projected semi-major axis of the orbit, which is dominated by precession-driven changes in the orbital inclination. This measurement, along with limits on the rate of change of other orbital elements, can be used to significantly restrict the properties of the outer orbit. We find that the second companion most likely has a mass m~0.01 Msun --- it is almost certainly below the hydrogen burning limit (m<0.036 Msun, 95% confidence) --- and has a current distance from the binary of ~35 AU and orbital period of order one hundred years. Circular (and near-circular) orbits are allowed only if the pulsar magnetic field is ~3x10^9 G, an order of magnitude higher than a typical millisecond pulsar field strength. In this case, the companion has mass m~1.2x10^-3 Msun and orbital period ~62 years.Comment: 12 pages, 6 figures, 3 tables. Very minor clarifications and rewording. Accepted for publication in the Astrophys.

    Eclipse Timings of the Transient Low Mass X-ray Binary EXO0748-676. IV. The Rossi X-Ray Timing Explorer Eclipses

    Full text link
    We report our complete database of X-ray eclipse timings of the low mass X-ray binary EXO0748-676 observed by the Rossi X-Ray Timing Explorer (RXTE) satellite. As of this writing we have accumulated 443 full X-ray eclipses, 392 of which have been observed with the Proportional Counter Array on RXTE. These include both observations where an eclipse was specifically targeted and those eclipses found in the RXTE data archive. Eclipse cycle count has been maintained since the discovery of the EXO0748-676 system in February 1985. We describe our observing and analysis techniques for each eclipse and describe improvements we have made since the last compilation by Wolff et al. (2002). The principal result of this paper is the database containing the timing results from a seven-parameter fit to the X-ray light curve for each observed eclipse along with the associated errors in the fitted parameters. Based on the standard O-C analysis, EXO0748-676 has undergone four distinct orbital period epochs since its discovery. In addition, EXO0748-676 shows small-scale events in the O-C curve that are likely due to short-lived changes in the secondary star.Comment: Accepted for publication in The Astrophysical Journal Supplement Series, 5 figures. Analysis revised. Tables 1 & 3 update

    Did the ancient egyptians record the period of the eclipsing binary Algol - the Raging one?

    Full text link
    The eclipses in binary stars give precise information of orbital period changes. Goodricke discovered the 2.867 days period in the eclipses of Algol in the year 1783. The irregular orbital period changes of this longest known eclipsing binary continue to puzzle astronomers. The mass transfer between the two members of this binary should cause a long-term increase of the orbital period, but observations over two centuries have not confirmed this effect. Here, we present evidence indicating that the period of Algol was 2.850 days three millenia ago. For religious reasons, the ancient Egyptians have recorded this period into the Cairo Calendar, which describes the repetitive changes of the Raging one. Cairo Calendar may be the oldest preserved historical document of the discovery of a variable star.Comment: 26 pages, 5 figures, 11 table

    Evolution in Binary and Triple Stars, with an application to SS Lac

    Get PDF
    We present equations governing the way in which both the orbit and the intrinsic spins of stars in a close binary should evolve subject to a number of perturbing forces, including the effect of a third body in a possibly inclined wider orbit. We illustrate the solutions in some binary-star and triple-star situations: tidal friction in a wide but eccentric orbit of a radio pulsar about a B star, the Darwin and eccentricity instabilities in a more massive but shorter-period massive X-ray binary, and the interaction of tidal friction with Kozai cycles in a triple such as Algol (beta-Per), at an early stage in that star's life when all 3 components were ZAMS stars. We also attempt to model in some detail the interesting triple system SS Lac, which stopped eclipsing in about 1950. We find that our model of SS Lac is quite constrained by the relatively good observational data of this system, and leads to a specific inclination (29 deg) of the outer orbit relative to the inner orbit at epoch zero (1912). Although the intrinsic spins of the stars have little effect on the orbit, the converse is not true: the spin axes can vary their orientation relative to the close binary by up to 120 deg on a timescale of about a century.Comment: 30 pages, 6 figure

    The Solar Neighborhood X: New Nearby Stars in the Southern Sky and Accurate Photometric Distance Estimates for Red Dwarfs

    Full text link
    Photometric VRI and spectroscopic (6000-9500 A) observations of high proper motion stars discovered during the first phase of the SuperCOSMOS RECONS (SCR) search are used to estimate accurate distances to eight new nearby red dwarfs, including probable 10 pc sample members SCR 1845-6357 (M8.5V at 4.6 pc), the binary SCR 0630-7643AB (M6.0VJ at 7.0 pc), and SCR 1138-7721 (M5.0V at 9.4 pc). Distance estimates are determined using a suite of new photometric color-Mk relations defined using a robust set of nearby stars with accurate VRIJHK photometry and trigonometric parallaxes. These relations are utilized, with optical and infrared photometry, to estimate distances on a uniform system (generally good to 15%) for two additional samples of red nearby star candidates: several recently discovered members of the solar neighborhood, and known faint stars with proper motions in excess of 1.0"/yr south of DEC = -57.5. Of those without accurate trigonometric parallax measurements, there are five stars in the first sample and three in the second that are likely to be within 10 pc. The two nearest are SO 0253+1652 (M7.0V at 3.7 pc) and DEN 1048-3956 (M8.5V at 4.5 pc). When combined with SCR 1845-6357, these three stars together represent the largest increase in the 5 pc sample in several decades. Red spectra are presented for the red dwarfs and types are given on the RECONS standard spectral system. Red spectra are also given for two new nearby white dwarfs for which we estimate distances from the photometry of less than 20 pc -- WD 0141-675 (LHS 145, 9.3 pc) and SCR 2012-5956 (17.4 pc). WD 0141-675 brings the total number of systems nearer than 10 pc discussed in this paper to 12.Comment: accepted to The Astronomical Journal (scheduled for November 2004 issue

    Debris disks in main sequence binary systems

    Get PDF
    We observed 69 A3-F8 main sequence binary star systems using the Multiband Imaging Photometer for Spitzer onboard the Spitzer Space Telescope. We find emission significantly in excess of predicted photospheric flux levels for 9(+4/-3)% and 40(+7/-6)% of these systems at 24 and 70 microns, respectively. Twenty two systems total have excess emission, including four systems that show excess emission at both wavelengths. A very large fraction (nearly 60%) of observed binary systems with small (<3 AU) separations have excess thermal mission. We interpret the observed infrared excesses as thermal emission from dust produced by collisions in planetesimal belts. The incidence of debris disks around main sequence A3-F8 binaries is marginally higher than that for single old AFGK stars. Whatever combination of nature (birth conditions of binary systems) and nurture (interactions between the two stars) drives the evolution of debris disks in binary systems, it is clear that planetesimal formation is not inhibited to any great degree. We model these dust disks through fitting the spectral energy distributions and derive typical dust temperatures in the range 100--200 K and typical fractional luminosities around 10^-5, with both parameters similar to other Spitzer-discovered debris disks. Our calculated dust temperatures suggest that about half the excesses we observe are derived from circumbinary planetesimal belts and around one third of the excesses clearly suggest circumstellar material. Three systems with excesses have dust in dynamically unstable regions, and we discuss possible scenarios for the origin of this short-lived dust.Comment: ApJ, in press. 57 pages, including 7 figures (one of which is in color

    From the Heart of The Ghoul: C and N Abundances in the Corona of Algol B

    Full text link
    Chandra Low Energy Transmission Grating Spectrograph observations of Algol have been used to determine the abundances of C and N in the secondary star for the first time. The analysis was performed relative to similar observations of an adopted "standard" star HR 1099. It is demonstrated that HR 1099 and Algol are coronal twins in many respects and that their X-ray spectra are very similar in nearly all details, except for the observed strengths of C and N lines. The H-like transitions of C and N in the coronae of Algol and HR 1099 demonstrate that the surface abundances of Algol B have been strongly modified by CN-processing, as shown earlier by Schmitt & Ness (2002). It is found that N is enhanced in Algol B by a factor of 3 compared to HR 1099. No C lines are detected in the Algol spectrum, indicating a C depletion relative to HR 1099 by a factor of 10 or more. These C and N abundances indicate that Algol B must have lost at least half of its initial mass, and are consistent with predictions of evolutionary models that include non-conservative mass transfer and angular momentum loss through magnetic activity. Little or no dredge-up of material subjected to CN-processing has occurred on the subgiant component of HR 1099. It is concluded that Fe is very likely depleted in the coronae of both Algol and HR 1099 relative to their photospheres by 0.5 dex, and C, N and O by 0.3 dex. Instead, Ne is enhanced by up to 0.5 dex.Comment: 17 pages, 4 figures, ApJ accepte
    • 

    corecore