57 research outputs found
Aircraft optimization by a system approach: Achievements and trends
Recently emerging methodology for optimal design of aircraft treated as a system of interacting physical phenomena and parts is examined. The methodology is found to coalesce into methods for hierarchic, non-hierarchic, and hybrid systems all dependent on sensitivity analysis. A separate category of methods has also evolved independent of sensitivity analysis, hence suitable for discrete problems. References and numerical applications are cited. Massively parallel computer processing is seen as enabling technology for practical implementation of the methodology
A system approach to aircraft optimization
Mutual couplings among the mathematical models of physical phenomena and parts of a system such as an aircraft complicate the design process because each contemplated design change may have a far reaching consequence throughout the system. Techniques are outlined for computing these influences as system design derivatives useful for both judgemental and formal optimization purposes. The techniques facilitate decomposition of the design process into smaller, more manageable tasks and they form a methodology that can easily fit into existing engineering organizations and incorporate their design tools
Multidisciplinary optimization for engineering systems: Achievements and potential
The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed
The case for aerodynamic sensitivity analysis
No specific solutions are offered, nor verified by applications, for its subject problem which is sensitivity analysis in Computational Fluid Dynamics (CFD). Instead, a plea is made to the CFD community for extending their present capability to include sensitivity analysis. The plea is made from the viewpoint of an aeronautical engineer, not an expert in CFD methods, who needs the sensitivity information when working at the junction of aerodynamics, structures, active controls, and other disciplines whose inputs need to be integrated in aircraft design
A technique for locating function roots and for satisfying equality constraints in optimization
A new technique for locating simultaneous roots of a set of functions is described. The technique is based on the property of the Kreisselmeier-Steinhauser function which descends to a minimum at each root location. It is shown that the ensuing algorithm may be merged into any nonlinear programming method for solving optimization problems with equality constraints
Optimization by decomposition: A step from hierarchic to non-hierarchic systems
A new, non-hierarchic decomposition is formulated for system optimization that uses system analysis, system sensitivity analysis, temporary decoupled optimizations performed in the design subspaces corresponding to the disciplines and subsystems, and a coordination optimization concerned with the redistribution of responsibility for the constraint satisfaction and design trades among the disciplines and subsystems, and a coordination optimization concerned with the redistribution of responsibility for the constraint satisfaction and design trades among the disciplines and subsystems. The approach amounts to a variation of the well-known method of subspace optimization modified so that the analysis of the entire system is eliminated from the subspace optimization and the subspace optimizations may be performed concurrently
Approximate simulation model for analysis and optimization in engineering system design
Computational support of the engineering design process routinely requires mathematical models of behavior to inform designers of the system response to external stimuli. However, designers also need to know the effect of the changes in design variable values on the system behavior. For large engineering systems, the conventional way of evaluating these effects by repetitive simulation of behavior for perturbed variables is impractical because of excessive cost and inadequate accuracy. An alternative is described based on recently developed system sensitivity analysis that is combined with extrapolation to form a model of design. This design model is complementary to the model of behavior and capable of direct simulation of the effects of design variable changes
Multidisciplinary design optimization: An emerging new engineering discipline
This paper defines the Multidisciplinary Design Optimization (MDO) as a new field of research endeavor and as an aid in the design of engineering systems. It examines the MDO conceptual components in relation to each other and defines their functions
Optimization by decomposition: A step from hierarchic to non-hierarchic systems
A new, non-hierarchic decomposition is formulated for system optimization that uses system analysis, system sensitivity analysis, temporary decoupled optimizations performed in the design subspaces corresponding to the disciplines and subsystems, and a coordination optimization concerned with the redistribution of responsibility for the constraint satisfaction and design trades among the disciplines and subsystems. The approach amounts to a variation of the well-known method of subspace optimization modified so that the analysis of the entire system is eliminated from the subspace optimization and the subspace optimizations may be performed concurrently
Sensitivity analysis and multidisciplinary optimization for aircraft design: Recent advances and results
Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data
- …