652 research outputs found
Contrasting roles for DNA methyltransferases and histone deacetylases in single-item and associative recognition memory
Recognition memory enables us to judge whether we have encountered a stimulus before and to recall associated information, including where the stimulus was encountered. The perirhinal cortex (PRh) is required for judgment of stimulus familiarity, while hippocampus (HPC) and medial prefrontal cortex (mPFC) are additionally involved when spatial information associated with a stimulus needs to be remembered. While gene expression is known to be essential for the consolidation of long-term recognition memory, the underlying regulatory mechanisms are not fully understood. Here we investigated the roles of two epigenetic mechanisms, DNA methylation and histone deacetylation, in recognition memory. Infusion of DNA methyltransferase inhibitors into PRh impaired performance in novel object recognition and object-in-place tasks while infusions into HPC or mPFC impaired object-in-place performance only. In contrast, inhibition of histone deacetylases in PRh, but not mPFC, enhanced recognition memory. These results support the emerging role of epigenetic processes in learning and memory
Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns
Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54–86% cover), namely hard corals (20–74%) and crustose coralline algae (CCA) (10–36%). While turf algae were relatively common at both locations (8–22%), larger fleshy macroalgae were virtually absent at Kingman (<1%) and rare at Palmyra (0.7–9.3%). Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra’s backreef and Kingman’s patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman’s patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora), indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman’s forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of coral in localized shelter. In contrast, the cover of turf algae at Kingman was positively related to wave energy, reflecting their ability to rapidly colonize newly available space. No significant patterns with wave energy were observed on Palmyra’s forereef, suggesting that a more detailed model is required to study biophysical coupling there. Kingman, Palmyra, and other remote oceanic reefs provide interesting case studies to explore biophysical influences on benthic ecology and dynamics
Natural History of Coral-Algae Competition across a Gradient of Human Activity in the Line Islands
Competition between corals and benthic algae is prevalent on coral reefs worldwide and has the potential to influence the structure of the reef benthos. Human activities may influence the outcome of these interactions by favoring algae to become the superior competitor, and this type of change in competitive dynamics is a potential mechanism driving coral-algal phase shifts. Here we surveyed the types and outcomes of coral-algal interactions varied across reefs on the different islands. On reefs surrounding inhabited islands, however, turf algae were generally the superior competitors. When corals were broken down by size class, we found that the smallest and the largest coral colonies were the best competitors against algae; the former successfully fought off algae while being completely surrounded, and the latter generally avoided algal overgrowth by growing up above the benthos. Our data suggest that human disruption of the reef ecosystem may lead to a building pattern of competitive disadvantage for corals against encroaching algae, potentially initiating a transition towards algal dominance
Vegetation phenology as a key driver for fire occurrence in the UK and comparable humid temperate regions
Background Fire activity in the UK and comparable regions of northwest Europe is generally out of phase with peak fire weather conditions. Aims Here, we assess the potential effect of phenology on fire occurrence patterns for the UK. Methods We examined fire occurrence and vegetation phenology in the UK for 2012–2023, mapped onto the main fire-affected vegetation cover types within distinct precipitation regions, allowing the fire occurrence for fuels in different phenological phases to be explored across distinct ‘fuel’ types and regions. Key results The UK’s fire regime is characterised by burning in semi-natural grasslands and evergreen dwarf shrub ecosystems in early spring when vegetation is still dormant. During the high-greenness phase in late spring and summer, fire activity is reduced by a factor of 5–6 despite typically elevated fire weather conditions within that period. Conclusions and implications Semi-natural vegetation in the UK is very resistant to burning during the high-greenness phase. However, this ‘fire barrier’ is diminished during severe drought episodes, which are predicted to become more extreme in the coming decades. Incorporating phenology information into models therefore has great potential for improving future fire danger and behaviour predictions in the UK and comparable humid temperate regions
Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction
Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhesion to surfaces, ideally to a low enough level that hydrodynamic shear stresses can detach deposits and prevent plug formation. Systematic and quantitative studies of hydrate adhesion on smooth substrates with varying solid surface energies reveal a linear trend between hydrate adhesion strength and the practical work of adhesion (γ[superscript total][1 + cos θ[subscript rec]]) of a suitable probe liquid, that is, one with similar surface energy properties to those of the hydrate. A reduction in hydrate adhesion strength by more than a factor of four when compared to bare steel is achieved on surfaces characterized by low Lewis acid, Lewis base, and van der Waals contributions to surface free energy such that the practical work of adhesion is minimized. These fundamental studies provide a framework for the development of hydrate-phobic surfaces, and could lead to passive enhancement of flow assurance and prevention of blockages in deep-sea oil and gas operations.Massachusetts Institute of Technology. Energy Initiative (Chevron Corporation)Massachusetts Institute of Technology. Dept. of Mechanical EngineeringNational Research Council (U.S.) (Postdoctoral Fellowship
Droplet mobility on lubricant-impregnated surfaces
Non-wetting surfaces containing micro/nanotextures impregnated with lubricating liquids have recently been shown to exhibit superior non-wetting performance compared to superhydrophobic surfaces that rely on stable air–liquid interfaces. Here we examine the fundamental physico-chemical hydrodynamics that arise when droplets, immiscible with the lubricant, are placed on and allowed to move along these surfaces. We find that these four-phase systems show novel contact line morphology comprising a finite annular ridge of the lubricant pulled above the surface texture and consequently as many as three distinct 3-phase contact lines. We show that these distinct morphologies not only govern the contact line pinning that controls droplets' initial resistance to movement but also the level of viscous dissipation and hence their sliding velocity once the droplets begin to move.United States. Defense Advanced Research Projects Agency. Young Faculty AwardMassachusetts Institute of Technology. Energy InitiativeNational Science Foundation (U.S.). CAREER Award (0952564
Science results from sixteen years of MRO SHARAD operations
In operation for >16 years to date, the Mars Reconnaissance Orbiter (MRO) Shallow Radar (SHARAD) sounder
has acquired data at its nominal 300–450 m along-track and 3-km cross-track resolution covering >55% of the
Martian surface, with nearly 100% overlap in coverage at that scale in the polar regions and in a number of
smaller mid-latitude areas. While SHARAD data have opened a new window into understanding the interior
structures and properties of Martian ices, volcanics, and sedimentary deposits up to a few kilometers in depth,
they have also led to new revelations about the deeper interior and the behavior of the planet’s ionosphere. Here
we summarize the data collected by SHARAD over this time period, the methods used in the analysis of that data,
and the resulting scientific findings. The polar data are especially rich, revealing complex structures that
comprise up to several dozen reflecting interfaces that extend to depths of 3 km, which inform the evolution of
Martian climate in the late Amazonian period. SHARAD observations of mid-latitude lobate debris aprons and
other glacier-like landforms detect strong basal reflections and low dielectric loss, confirming that they are icerich
debris-covered glaciers. In other mid-latitude terrains, SHARAD data demonstrate the presence of widespread
ground ices, likely at lower concentrations. SHARAD signals also probe non-icy materials, mapping out
stacked lava flows, probing low-density materials thought to be ash-fall deposits, and occasionally penetrating
sedimentary deposits, all of which reveal the structures and interior properties diagnostic of emplacement
processes. SHARAD signals are impacted by their passage through the Martian ionosphere, revealing variations
in time and space of the total electron content linked with the remanent magnetic field. Advanced techniques
developed over the course of the mission, which include subband and super-resolution processing, coherent and
incoherent summing, and three-dimensional (3D) radar imaging, are enabling new discoveries and extending the
utility of the data. For 3D imaging, a cross-track spacing at the nominal 3-km resolution is more than sufficient to
achieve good results, but finer spacing of 0.5 km or less significantly improves the spatially interpolated radar
images. Recent electromagnetic modeling and a flight test show that SHARAD’s signal-to-noise ratio can be
greatly improved with a large (~120â—¦) roll of the spacecraft to reduce interference with the spacecraft body. Both
MRO and SHARAD are in remarkably fine working order, and the teams look forward to many more years in
which to pursue improvements in coverage density, temporal variability in the ionosphere, and data quality that
promise exciting new discoveries at Mars
- …