46 research outputs found

    Black holes production in self-complete quantum gravity

    Full text link
    A regular black hole model, which has been proposed by Hayward, is reconsidered in the framework of higher dimensional TeV unification and self-complete quantum gravity scenario (Dvali, Spallucci). We point out the "quantum" nature of these objects and compute their cross section production by taking into account the key role played by the existence of a "minimal length" l_0. We show as the threshold energy is related to l_0. We recover, in the high energy limit, the standard "black-disk" form of the cross section, while it vanishes, below threshold, faster than any power of the invariant mass-energy \sqrt{-s}.Comment: 12 pages; 3 figures; accepted for publication in PL

    Thermodynamical phases of a regular SAdS black hole

    Full text link
    This paper studies the thermodynamical stability of regular BHs in AdS5 background. We investigate off-shell free energy of the system as a function of temperature for different values of a "coupling constant" L=4 theta/l^2, where the cosmological constant is Lambda = -3/l^2 and \sqrt{theta} is a "minimal length". The parameter L admits a critical value, L_{inf}=0.2, corresponding to the appearance of an inflexion point in the Hawking temperature. In the weak-coupling regime L < L_{inf}, there are first order phase transitions at different temperatures. Unlike the Hawking-Page case, at temperature 0\le T \le T_{min} the ground state is populated by "cold" near-extremal BHs instead of a pure radiation. On the other hand, for L \g L_{inf} only large, thermodynamically stable, BHs exist.Comment: 12 pages; 6 Figures; accepted for publication in Int. J. Mod. Phys.

    Maxwell's equal area law and the Hawking-Page phase transition

    Full text link
    In this paper we study the phases of a Schwarzschild black hole in the Anti deSitter background geometry. Exploiting fluid/gravity duality we construct the Maxwell equal area isotherm T=T* in the temperature-entropy plane, in order to eliminate negative heat capacity black hole configurations. The construction we present here is reminiscent of the isobar cut in the pressure-volume plane which eliminates un-physical part of the Van der Walls curves below the critical temperature. Our construction also modifies the Hawking-Page phase transition. Stable black holes are formed at the temperature T > T*, while pure radiation persists for T< T*. T* turns out to be below the standard Hawking-Page temperature and there are no unstable black holes as in the usual scenario. Also, we show that in order to reproduce the correct black hole entropy S=A/4, one has to write a black hole equation of state, i.e. P=P(V), in terms of the geometrical volume V=4\pi r^3/3.Comment: 15 pages, 4 Figures. Accepted for publication in Journal of Gravit

    Dynamically self-regular quantum harmonic black holes

    Get PDF
    The recently proposed UV self-complete quantum gravity program is a new and very interesting way to envision Planckian/trans-Planckian physics. in this new framework, high energy scattering is dominated by the creation of micro black holes, and it is experimentally impossible to probe distances shorter than the horizon radius. In this letter we present a model which realizes this idea through the creation of self-regular quantum black holes admitting a minimal size extremal configuration. Their radius provides a dynamically generated minimal length acting as a universal short-distance cut-off. We propose a quantisation scheme for this new kind of microscopic objects based on a Bohr-like approach, which does not require a detailed knowledge of quantum gravity. The resulting black hole quantum picture resembles the energy spectrum of a quantum harmonic oscillator. The mass of the extremal configuration plays the role of zero-point energy. Large quantum number re-establish the classical black hole description. Finally, we also formulate a "quantum hoop conjecture" which is satisfied by all the mass eigen-states and sustains the existence of quantum black holes sourced by Gaussian matter distributions.Comment: 14 pages; 2 Figures. In print in Physics Letters

    A particle-like description of Planckian black holes

    Get PDF
    In this paper we abandon the idea that even a "quantum" black hole, of Planck size, can still be described as a classical, more or less complicated, geometry. Rather, we consider a genuine quantum mechanical approach where a Planckian black hole is, by all means, just another "particle", even if with a distinguishing property: its linear size increases with the energy. The horizon dynamics is equivalently described in terms of a particle moving in gravitational potential derived from the horizon equation itself in a self-consistent manner. The particle turning-points match the radius of the inner and outer horizons of a charged black hole. This classical model pave the way towards the wave equation for a truly quantum black hole. We compute the exact form of the wave function and determine the energy spectrum. Finally, we describe the classical limit in which the quantum picture correctly approaches the classical geometric formulation. We find that the quantum-to-classical transition occurs far above the Planck scale
    corecore