4,725 research outputs found
On the expected uniform error of geometric Brownian motion approximated by the L\'evy-Ciesielski construction
It is known that the Brownian bridge or L\'evy-Ciesielski construction of
Brownian paths almost surely converges uniformly to the true Brownian path. In
the present article the focus is on the error. In particular, we show for
geometric Brownian motion that at level , at which there are points
evaluated on the Brownian path, the expected uniform error has an upper bound
of order , or equivalently, . This upper bound matches the known order for the expected uniform error
of the standard Brownian motion. We apply the result to an option pricing
example
Multilevel Quasi-Monte Carlo Methods for Lognormal Diffusion Problems
In this paper we present a rigorous cost and error analysis of a multilevel
estimator based on randomly shifted Quasi-Monte Carlo (QMC) lattice rules for
lognormal diffusion problems. These problems are motivated by uncertainty
quantification problems in subsurface flow. We extend the convergence analysis
in [Graham et al., Numer. Math. 2014] to multilevel Quasi-Monte Carlo finite
element discretizations and give a constructive proof of the
dimension-independent convergence of the QMC rules. More precisely, we provide
suitable parameters for the construction of such rules that yield the required
variance reduction for the multilevel scheme to achieve an -error
with a cost of with , and in
practice even , for sufficiently fast decaying covariance
kernels of the underlying Gaussian random field inputs. This confirms that the
computational gains due to the application of multilevel sampling methods and
the gains due to the application of QMC methods, both demonstrated in earlier
works for the same model problem, are complementary. A series of numerical
experiments confirms these gains. The results show that in practice the
multilevel QMC method consistently outperforms both the multilevel MC method
and the single-level variants even for non-smooth problems.Comment: 32 page
The Establishment of the GENEQOL Consortium to Investigate the Genetic Disposition of Patient-Reported Quality-of-Life Outcomes
To our knowledge, no comprehensive, interdisciplinary initiatives have been taken to examine the role of genetic variants on patient-reported quality-of-life outcomes. The overall objective of this paper is to describe the establishment of an international and interdisciplinary consortium, the GENEQOL Consortium, which intends to investigate the genetic disposition of patient-reported quality-of-life outcomes. We have identified five primary patient-reported quality-of-life outcomes as initial targets: negative psychological affect, positive psychological affect, self-rated physical health, pain, and fatigue. The first tangible objective of the GENEQOL Consortium is to develop a list of potential biological pathways, genes and genetic variants involved in these quality-of-life outcomes, by reviewing current genetic knowledge. The second objective is to design a research agenda to investigate and validate those genes and genetic variants of patient-reported quality-of-life outcomes, by creating large datasets. During its first meeting, the Consortium has discussed draft summary documents addressing these questions for each patient-reported quality-of-life outcome. A summary of the primary pathways and robust findings of the genetic variants involved is presented here. The research agenda outlines possible research objectives and approaches to examine these and new quality-of-life domains. Intriguing questions arising from this endeavor are discussed. Insight into the genetic versus environmental components of patient-reported quality-of-life outcomes will ultimately allow us to explore new pathways for improving patient care. If we can identify patients who are susceptible to poor quality of life, we will be able to better target specific clinical interventions to enhance their quality of life and treatment outcomes.quality of life, self-rated health, pain, fatigue, genetic disposition, Patient-Reported Quality-of-Life Outcomes
- …