3,988 research outputs found
Towards Data-driven Simulation of End-to-end Network Performance Indicators
Novel vehicular communication methods are mostly analyzed simulatively or
analytically as real world performance tests are highly time-consuming and
cost-intense. Moreover, the high number of uncontrollable effects makes it
practically impossible to reevaluate different approaches under the exact same
conditions. However, as these methods massively simplify the effects of the
radio environment and various cross-layer interdependencies, the results of
end-to-end indicators (e.g., the resulting data rate) often differ
significantly from real world measurements. In this paper, we present a
data-driven approach that exploits a combination of multiple machine learning
methods for modeling the end-to-end behavior of network performance indicators
within vehicular networks. The proposed approach can be exploited for fast and
close to reality evaluation and optimization of new methods in a controllable
environment as it implicitly considers cross-layer dependencies between
measurable features. Within an example case study for opportunistic vehicular
data transfer, the proposed approach is validated against real world
measurements and a classical system-level network simulation setup. Although
the proposed method does only require a fraction of the computation time of the
latter, it achieves a significantly better match with the real world
evaluations
Exploiting Map Topology Knowledge for Context-predictive Multi-interface Car-to-cloud Communication
While the automotive industry is currently facing a contest among different
communication technologies and paradigms about predominance in the connected
vehicles sector, the diversity of the various application requirements makes it
unlikely that a single technology will be able to fulfill all given demands.
Instead, the joint usage of multiple communication technologies seems to be a
promising candidate that allows benefiting from characteristical strengths
(e.g., using low latency direct communication for safety-related messaging).
Consequently, dynamic network interface selection has become a field of
scientific interest. In this paper, we present a cross-layer approach for
context-aware transmission of vehicular sensor data that exploits mobility
control knowledge for scheduling the transmission time with respect to the
anticipated channel conditions for the corresponding communication technology.
The proposed multi-interface transmission scheme is evaluated in a
comprehensive simulation study, where it is able to achieve significant
improvements in data rate and reliability
Car-to-Cloud Communication Traffic Analysis Based on the Common Vehicle Information Model
Although connectivity services have been introduced already today in many of
the most recent car models, the potential of vehicles serving as highly mobile
sensor platform in the Internet of Things (IoT) has not been sufficiently
exploited yet. The European AutoMat project has therefore defined an open
Common Vehicle Information Model (CVIM) in combination with a cross-industry,
cloud-based big data marketplace. Thereby, vehicle sensor data can be leveraged
for the design of entirely new services even beyond traffic-related
applications (such as localized weather forecasts). This paper focuses on the
prediction of the achievable data rate making use of an analytical model based
on empirical measurements. For an in-depth analysis, the CVIM has been
integrated in a vehicle traffic simulator to produce CVIM-complaint data
streams as a result of the individual behavior of each vehicle (speed, brake
activity, steering activity, etc.). In a next step, a simulation of vehicle
traffic in a realistically modeled, large-area street network has been used in
combination with a cellular Long Term Evolution (LTE) network to determine the
cumulated amount of data produced within each network cell. As a result, a new
car-to-cloud communication traffic model has been derived, which quantifies the
data rate of aggregated car-to-cloud data producible by vehicles depending on
the current traffic situations (free flow and traffic jam). The results provide
a reference for network planning and resource scheduling for car-to-cloud type
services in the context of smart cities
Efficient Machine-type Communication using Multi-metric Context-awareness for Cars used as Mobile Sensors in Upcoming 5G Networks
Upcoming 5G-based communication networks will be confronted with huge
increases in the amount of transmitted sensor data related to massive
deployments of static and mobile Internet of Things (IoT) systems. Cars acting
as mobile sensors will become important data sources for cloud-based
applications like predictive maintenance and dynamic traffic forecast. Due to
the limitation of available communication resources, it is expected that the
grows in Machine-Type Communication (MTC) will cause severe interference with
Human-to-human (H2H) communication. Consequently, more efficient transmission
methods are highly required. In this paper, we present a probabilistic scheme
for efficient transmission of vehicular sensor data which leverages favorable
channel conditions and avoids transmissions when they are expected to be highly
resource-consuming. Multiple variants of the proposed scheme are evaluated in
comprehensive realworld experiments. Through machine learning based combination
of multiple context metrics, the proposed scheme is able to achieve up to 164%
higher average data rate values for sensor applications with soft deadline
requirements compared to regular periodic transmission.Comment: Best Student Paper Awar
A Radio-fingerprinting-based Vehicle Classification System for Intelligent Traffic Control in Smart Cities
The measurement and provision of precise and upto-date traffic-related key
performance indicators is a key element and crucial factor for intelligent
traffic controls systems in upcoming smart cities. The street network is
considered as a highly-dynamic Cyber Physical System (CPS) where measured
information forms the foundation for dynamic control methods aiming to optimize
the overall system state. Apart from global system parameters like traffic flow
and density, specific data such as velocity of individual vehicles as well as
vehicle type information can be leveraged for highly sophisticated traffic
control methods like dynamic type-specific lane assignments. Consequently,
solutions for acquiring these kinds of information are required and have to
comply with strict requirements ranging from accuracy over cost-efficiency to
privacy preservation. In this paper, we present a system for classifying
vehicles based on their radio-fingerprint. In contrast to other approaches, the
proposed system is able to provide real-time capable and precise vehicle
classification as well as cost-efficient installation and maintenance, privacy
preservation and weather independence. The system performance in terms of
accuracy and resource-efficiency is evaluated in the field using comprehensive
measurements. Using a machine learning based approach, the resulting success
ratio for classifying cars and trucks is above 99%
- …