3,988 research outputs found

    Towards Data-driven Simulation of End-to-end Network Performance Indicators

    Full text link
    Novel vehicular communication methods are mostly analyzed simulatively or analytically as real world performance tests are highly time-consuming and cost-intense. Moreover, the high number of uncontrollable effects makes it practically impossible to reevaluate different approaches under the exact same conditions. However, as these methods massively simplify the effects of the radio environment and various cross-layer interdependencies, the results of end-to-end indicators (e.g., the resulting data rate) often differ significantly from real world measurements. In this paper, we present a data-driven approach that exploits a combination of multiple machine learning methods for modeling the end-to-end behavior of network performance indicators within vehicular networks. The proposed approach can be exploited for fast and close to reality evaluation and optimization of new methods in a controllable environment as it implicitly considers cross-layer dependencies between measurable features. Within an example case study for opportunistic vehicular data transfer, the proposed approach is validated against real world measurements and a classical system-level network simulation setup. Although the proposed method does only require a fraction of the computation time of the latter, it achieves a significantly better match with the real world evaluations

    Exploiting Map Topology Knowledge for Context-predictive Multi-interface Car-to-cloud Communication

    Full text link
    While the automotive industry is currently facing a contest among different communication technologies and paradigms about predominance in the connected vehicles sector, the diversity of the various application requirements makes it unlikely that a single technology will be able to fulfill all given demands. Instead, the joint usage of multiple communication technologies seems to be a promising candidate that allows benefiting from characteristical strengths (e.g., using low latency direct communication for safety-related messaging). Consequently, dynamic network interface selection has become a field of scientific interest. In this paper, we present a cross-layer approach for context-aware transmission of vehicular sensor data that exploits mobility control knowledge for scheduling the transmission time with respect to the anticipated channel conditions for the corresponding communication technology. The proposed multi-interface transmission scheme is evaluated in a comprehensive simulation study, where it is able to achieve significant improvements in data rate and reliability

    Car-to-Cloud Communication Traffic Analysis Based on the Common Vehicle Information Model

    Full text link
    Although connectivity services have been introduced already today in many of the most recent car models, the potential of vehicles serving as highly mobile sensor platform in the Internet of Things (IoT) has not been sufficiently exploited yet. The European AutoMat project has therefore defined an open Common Vehicle Information Model (CVIM) in combination with a cross-industry, cloud-based big data marketplace. Thereby, vehicle sensor data can be leveraged for the design of entirely new services even beyond traffic-related applications (such as localized weather forecasts). This paper focuses on the prediction of the achievable data rate making use of an analytical model based on empirical measurements. For an in-depth analysis, the CVIM has been integrated in a vehicle traffic simulator to produce CVIM-complaint data streams as a result of the individual behavior of each vehicle (speed, brake activity, steering activity, etc.). In a next step, a simulation of vehicle traffic in a realistically modeled, large-area street network has been used in combination with a cellular Long Term Evolution (LTE) network to determine the cumulated amount of data produced within each network cell. As a result, a new car-to-cloud communication traffic model has been derived, which quantifies the data rate of aggregated car-to-cloud data producible by vehicles depending on the current traffic situations (free flow and traffic jam). The results provide a reference for network planning and resource scheduling for car-to-cloud type services in the context of smart cities

    Efficient Machine-type Communication using Multi-metric Context-awareness for Cars used as Mobile Sensors in Upcoming 5G Networks

    Full text link
    Upcoming 5G-based communication networks will be confronted with huge increases in the amount of transmitted sensor data related to massive deployments of static and mobile Internet of Things (IoT) systems. Cars acting as mobile sensors will become important data sources for cloud-based applications like predictive maintenance and dynamic traffic forecast. Due to the limitation of available communication resources, it is expected that the grows in Machine-Type Communication (MTC) will cause severe interference with Human-to-human (H2H) communication. Consequently, more efficient transmission methods are highly required. In this paper, we present a probabilistic scheme for efficient transmission of vehicular sensor data which leverages favorable channel conditions and avoids transmissions when they are expected to be highly resource-consuming. Multiple variants of the proposed scheme are evaluated in comprehensive realworld experiments. Through machine learning based combination of multiple context metrics, the proposed scheme is able to achieve up to 164% higher average data rate values for sensor applications with soft deadline requirements compared to regular periodic transmission.Comment: Best Student Paper Awar

    A Radio-fingerprinting-based Vehicle Classification System for Intelligent Traffic Control in Smart Cities

    Full text link
    The measurement and provision of precise and upto-date traffic-related key performance indicators is a key element and crucial factor for intelligent traffic controls systems in upcoming smart cities. The street network is considered as a highly-dynamic Cyber Physical System (CPS) where measured information forms the foundation for dynamic control methods aiming to optimize the overall system state. Apart from global system parameters like traffic flow and density, specific data such as velocity of individual vehicles as well as vehicle type information can be leveraged for highly sophisticated traffic control methods like dynamic type-specific lane assignments. Consequently, solutions for acquiring these kinds of information are required and have to comply with strict requirements ranging from accuracy over cost-efficiency to privacy preservation. In this paper, we present a system for classifying vehicles based on their radio-fingerprint. In contrast to other approaches, the proposed system is able to provide real-time capable and precise vehicle classification as well as cost-efficient installation and maintenance, privacy preservation and weather independence. The system performance in terms of accuracy and resource-efficiency is evaluated in the field using comprehensive measurements. Using a machine learning based approach, the resulting success ratio for classifying cars and trucks is above 99%
    • …
    corecore