475 research outputs found
Application of the Exact Muffin-Tin Orbitals Theory: the Spherical Cell Approximation
We present a self-consistent electronic structure calculation method based on
the {\it Exact Muffin-Tin Orbitals} (EMTO) Theory developed by O. K. Andersen,
O. Jepsen and G. Krier (in {\it Lectures on Methods of Electronic Structure
Calculations}, Ed. by V. Kumar, O.K. Andersen, A. Mookerjee, Word Scientific,
1994 pp. 63-124) and O. K. Andersen, C. Arcangeli, R. W. Tank, T.
Saha-Dasgupta, G. Krier, O. Jepsen, and I. Dasgupta, (in {\it Mat. Res. Soc.
Symp. Proc.} {\bf 491}, 1998 pp. 3-34). The EMTO Theory can be considered as an
{\it improved screened} KKR (Korringa-Kohn-Rostoker) method which is able to
treat large overlapping potential spheres. Within the present implementation of
the EMTO Theory the one electron equations are solved exactly using the Green's
function formalism, and the Poisson's equation is solved within the {\it
Spherical Cell Approximation} (SCA). To demonstrate the accuracy of the
SCA-EMTO method test calculations have been carried out.Comment: 20 pages, 10 figure
Robust half-metallic antiferromagnets LaVOsO and LaMoO ( = Ca, Sr, Ba; = Re, Tc) from first-principles calculations
We have theoretically designed three families of the half-metallic (HM)
antiferromagnets (AFM), namely, LaVOsO, LaMoTcO and
LaMoReO ( = Ca, Sr, Ba), based on a systematic {\it ab initio} study
of the ordered double perovskites LaO with the possible and
pairs from all the 3, 4 and 5 transtion metal elements being
considered. Electronic structure calculations based on first-principles
density-functional theory with generalized gradient approximation (GGA) for
more than sixty double perovskites LaCaO have been performed using the
all-electron full-potential linearized augmented-plane-wave method. The found
HM-AFM state in these materials survives the full {\it ab initio} lattice
constant and atomic position optimizations which were carried out using
frozen-core full potential projector augmented wave method. It is found that
the HM-AFM properties predicted previously in some of the double perovskites
would disappear after the full structural optimizations. The AFM is attributed
to both the superexchange mechanism and the generalized double exchange
mechanism via the () - O (2) - () coupling
and the latter is also believed to be the origin of the HM. Finally, in our
search for the HM-AFMs, we find LaCrTcO and LaCrReO to be AFM
insulators of an unconventional type in the sense that the two
antiferromagnetic coupled ions consist of two different elements and that the
two spin-resolved densities of states are no longer the same.Comment: To appear in Phys. Rev.
LDA+DMFT computation of the electronic spectrum of NiO
The electronic spectrum, energy gap and local magnetic moment of paramagnetic
NiO are computed by using the local density approximation plus dynamical
mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian
obtained within the local density approximation (LDA) is expressed in Wannier
functions basis, with only the five anti-bonding bands with mainly Ni 3d
character taken into account. Complementing it by local Coulomb interactions
one arrives at a material-specific many-body Hamiltonian which is solved by
DMFT together with quantum Monte-Carlo (QMC) simulations. The large insulating
gap in NiO is found to be a result of the strong electronic correlations in the
paramagnetic state. In the vicinity of the gap region, the shape of the
electronic spectrum calculated in this way is in good agreement with the
experimental x-ray-photoemission and bremsstrahlung-isochromat-spectroscopy
results of Sawatzky and Allen. The value of the local magnetic moment computed
in the paramagnetic phase (PM) agrees well with that measured in the
antiferromagnetic (AFM) phase. Our results for the electronic spectrum and the
local magnetic moment in the PM phase are in accordance with the experimental
finding that AFM long-range order has no significant influence on the
electronic structure of NiO.Comment: 15 pages, 6 figures, 1 table; published versio
First-principle Wannier functions and effective lattice fermion models for narrow-band compounds
We propose a systematic procedure for constructing effective lattice fermion
models for narrow-band compounds on the basis of first-principles electronic
structure calculations. The method is illustrated for the series of
transition-metal (TM) oxides: SrVO, YTiO, VO, and
YMoO. It consists of three parts, starting from LDA. (i)
construction of the kinetic energy Hamiltonian using downfolding method. (ii)
solution of an inverse problem and construction of the Wannier functions (WFs)
for the given kinetic energy Hamiltonian. (iii) calculation of screened Coulomb
interactions in the basis of \textit{auxiliary} WFs, for which the
kinetic-energy term is set to be zero. The last step is necessary in order to
avoid the double counting of the kinetic-energy term, which is included
explicitly into the model. The screened Coulomb interactions are calculated in
a hybrid scheme. First, we evaluate the screening caused by the change of
occupation numbers and the relaxation of the LMTO basis functions, using the
conventional constraint-LDA approach, where all matrix elements of
hybridization involving the TM orbitals are set to be zero. Then, we switch
on the hybridization and evaluate the screening associated with the change of
this hybridization in RPA. The second channel of screening is very important,
and results in a relatively small value of the effective Coulomb interaction
for isolated bands. We discuss details of this screening and consider
its band-filling dependence, frequency dependence, influence of the lattice
distortion, proximity of other bands, and the dimensionality of the model
Hamiltonian.Comment: 35 pages, 25 figure
Role of C in MgC_xNi_3 investigated from first principles
The influence of vacancies in the sub-lattice of , on its
structural, electronic and magnetic properties are studied by means of the
density-functional based Korringa-Kohn-Rostoker Green's function method
formulated in the atomic sphere approximation. Disorder is taken into account
by means of coherent-potential approximation. Characterizations representing
the change in the lattice properties include the variation in the equilibrium
lattice constants, bulk modulus and pressure derivative of the bulk modulus,
and that of electronic structure include the changes in the, total, partial and
-resolved density of states. The incipient magnetic properties are
studied by means of fixed-spin moment method of alloy theory, together in
conjunction with the phenomenological Ginzburg-Landau equation for magnetic
phase transition. The first-principles calculations reveal that due to the
breaking of the - bonds, some of the 3d states, which were lowered
in energy due to strong hybridization, are transfered back to higher energies
thereby increasing the itinerant character in the material. The Bloch spectral
densities evaluated at the high symmetry points however reveal that the charge
redistribution is not uniform over the cubic Brillouin zone, as new states are
seen to be created at the point, while a shift in the states on the
energy scale are seen at other high symmetry points
Construction of transferable spherically-averaged electron potentials
A new scheme for constructing approximate effective electron potentials
within density-functional theory is proposed. The scheme consists of
calculating the effective potential for a series of reference systems, and then
using these potentials to construct the potential of a general system. To make
contact to the reference system the neutral-sphere radius of each atom is used.
The scheme can simplify calculations with partial wave methods in the
atomic-sphere or muffin-tin approximation, since potential parameters can be
precalculated and then for a general system obtained through simple
interpolation formulas. We have applied the scheme to construct electron
potentials of phonons, surfaces, and different crystal structures of silicon
and aluminum atoms, and found excellent agreement with the self-consistent
effective potential. By using an approximate total electron density obtained
from a superposition of atom-based densities, the energy zero of the
corresponding effective potential can be found and the energy shifts in the
mean potential between inequivalent atoms can therefore be directly estimated.
This approach is shown to work well for surfaces and phonons of silicon.Comment: 8 pages (3 uuencoded Postscript figures appended), LaTeX,
CAMP-090594-
A first-principles comparison of the electronic properties of MgC_{y}Ni_{3} and ZnC_{y}Ni_{3} alloys
First-principles, density-functional-based electronic structure calculations
are employed to study the changes in the electronic properties of ZnC_{y}Ni_{3}
and MgC_{y}Ni_{3} using the Korringa-Kohn-Rostoker coherent-potential
approximation method in the atomic sphere approximation (KKR-ASA CPA). As a
function of decreasing C at%, we find a steady decrease in the lattice constant
and bulk modulus in either alloys. However, the pressure derivative of the bulk
modulus displays an opposite trend. Following the Debye model, which relates
the pressure derivative of the bulk modulus with the average phonon frequency
of the crystal, it can thus be argued that ZnCNi_{3} and its disordered alloys
posses a different phonon spectra in comparison to its MgCNi_{3} counterparts.
This is further justified by the marked similarity we find in the electronic
structure properties such as the variation in the density of states and the
Hopfield parameters calculated for these alloys. The effects on the equation of
state parameters and the density of states at the Fermi energy, for partial
replacement of Mg by Zn are also discussed.Comment: 19 pages, 15 figure
Compositional disorder and its influence on the structural, electronic and magnetic properties of MgC(Ni_{1-x}Co_{x})_{3} alloys using first-principles
First-principles, density-functional based electronic structure calculations
are carried out for MgC(Ni_{1-x}Co_{x})_{3} alloys over the concentration range
0\leq x\leq1, using Korringa-Kohn-Rostoker coherent-potential approximation
(KKR CPA) method in the atomic sphere approximation (ASA). The self-consistent
calculations are used to study the changes as a function of x in the equation
of state parameters, total and partial densities of states, magnetic moment and
the on-site exchange interaction parameter. To study the magnetic properties as
well as its volume dependence, fixed-spin moment calculations in conjunction
with the phenomenological Landau theory are employed. The salient features that
emerge from these calculations are (i) a concentration independent variation in
the lattice parameter and bulk modulus at x~0.75 with an anomaly in the
variation of the pressure derivative of bulk modulus, (ii) the fixed-spin
moment based corrections to the overestimated magnetic ground state for 0.0\leq
x\leq0.3 alloys, making the results consistent with the experiments, and (iii)
the possibility of multiple magnetic states at x~0.75, which, however, requires
further improvements in the calculations
- …