16,048 research outputs found

    Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?

    Full text link
    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (F{\sc{ornax}}) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M_{\odot} progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more "explodable." In fact, for our 25-M_{\odot} progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.Comment: Updated and revised text; 13 pages; 13 figures; Accepted to Ap.

    A Rich Population of X-ray Emitting Wolf-Rayet Stars in the Galactic Starburst Cluster Westerlund 1

    Full text link
    Recent optical and IR studies have revealed that the heavily-reddened starburst cluster Westerlund 1 (Wd 1) contains at least 22 Wolf-Rayet (WR) stars, comprising the richest WR population of any galactic cluster. We present results of a senstive Chandra X-ray observation of Wd 1 which detected 12 of the 22 known WR stars and the mysterious emission line star W9. The fraction of detected WN stars is nearly identical to that of WC stars. The WN stars WR-A and WR-B as well as W9 are exceptionally luminous in X-rays and have similar hard heavily-absorbed spectra with strong Si XIII and S XV emission lines. The luminous high-temperature X-ray emission of these three stars is characteristic of colliding wind binary systems but their binary status remains to be determined. Spectral fits of the X-ray bright sources WR-A and W9 with isothermal plane-parallel shock models require high absorption column densities log NH_{H} = 22.56 (cm2^{-2}) and yield characteristic shock temperatures kT_shock ~ 3 keV (T ~ 35 MK).Comment: ApJL, 2006, in press (3 figures, 1 table

    Hydrogenic Spin Quantum Computing in Silicon: A Digital Approach

    Get PDF
    We suggest an architecture for quantum computing with spin-pair encoded qubits in silicon. Electron-nuclear spin-pairs are controlled by a dc magnetic field and electrode-switched on and off hyperfine interaction. This digital processing is insensitive to tuning errors and easy to model. Electron shuttling between donors enables multi-qubit logic. These hydrogenic spin qubits are transferable to nuclear spin-pairs, which have long coherence times, and electron spin-pairs, which are ideally suited for measurement and initialization. The architecture is scalable to highly parallel operation.Comment: 4 pages, 5 figures; refereed and published version with improved introductio

    Using smart sensor strings for continuous monitoring of temperature stratification in large water bodies

    Get PDF
    Copyright © 2006 IEEEA "smart" thermistor string for continuous long-term temperature profiling in large water bodies is described allowing highly matched yet low-cost spatial and temporal temperature measurements. The sensor uses the three-wire SDI-12 communications standard to enable a low-powered radio or data logger on supporting buoys to command measurements and retrieve high-resolution temperature data in digital form. Each "smart" temperature sensor integrates a thermistor element, measurement circuitry, power control, calibration coefficient storage, temperature computation, and data communications. Multiple addressable sensors at discrete vertical depths are deployed along a three-wire cable that provides power and allows data transfer at regular intervals. Circuit, manufacturing, and automated calibration techniques allow temperature measurements with a resolution of plusmn0.003degC, and with intersensor matching of plusmn0.006degC. The low cost of each sensor is achieved by using poor tolerance thermistor and circuit components in conjunction with a 15-bit charge-balance analog-to-digital converter. Sensor inaccuracies and temperature coefficients are corrected by a two-point calibration procedure made possible by a standard-curve generator within the sensor, based upon the method of finite differences. This two-point calibration process allows in-field sensor string calibration in stratified water bodies and provides a means to correct for long-term calibration drift without having to return the string to a laboratory.Andrew J. Skinner and Martin F. Lamber

    A model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    Full text link
    Electric double layer supercapacitors are promising devices for high-power energy storage based on the reversible absorption of ions into porous, conducting electrodes. Graphene is a particularly good candidate for the electrode material in supercapacitors due to its high conductivity and large surface area. In this paper we consider supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted "spacer" molecules. We show that the large volumetric capacitances C > 100 F/cm^3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.Comment: 13 pages, 5 figures; additional discussion and supporting calculations adde

    X-rays from T Tau: A test case for accreting T Tauri stars

    Get PDF
    We test models for the generation of X-rays in accreting T Tauri stars (TTS), using X-ray data from the classical TTS T Tau. High-resolution spectroscopy from the Reflection Grating Spectrometers on XMM-Newton is used to infer electron densities, element abundances and the thermal structure of the X-ray source. We also discuss the ultraviolet light curve obtained by the Optical Monitor, and complementary ground-based photometry. A high-resolution image from Chandra constrains contributions from the two companions of T Tau N. The X-ray grating spectrum is rich in emission lines, but shows an unusual mixture of features from very hot (~30 MK) and very cool (1-3 MK) plasma, both emitted by similar amounts of emission measure. The cool plasma confirms the picture of a soft excess in the form of an enhanced OVII/OVIII Lya flux ratio, similar to that previously reported for other accreting TTS. Diagnostics from lines formed by this plasma indicate low electron densities (<~ 1E10 cm-3). The Ne/Fe abundance ratio is consistent with a trend in pre-main sequence stars in which this ratio depends on spectral type, but not on accretion. On the basis of line density diagnostics, we conclude that the density of the cool ``soft-excess'' plasma is orders of magnitude below that predicted for an accretion shock, assuming previously determined accretion rates of (3-6)E-8 M_sun/y. We argue that loading of magnetic field lines with infalling material suppresses the heating process in a part of the corona. We thus suggest that the X-ray production of T Tau is influenced by the accretion process although the X-rays may not form in the bulk of the accretion footpoints.Comment: 12 pages, 7 figures, A&A style. Accepted by A&A, to appear in a special section/issue dedicated to the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST). See also http://www.issibern.ch/teams/Taurus/papers.htm

    Investigation of Graded La2NiO4+ Cathodes to Improve SOFC Electrochemical Performance

    Get PDF
    Mixed ionic and electronic conducting MIEC oxides are promising materials for use as cathodes in solid oxide fuel cells SOFCs due to their enhanced electrocatalytic activity compared with electronic conducting oxides. In this paper, the MIEC oxide La2NiO4+ was prepared by the sol-gel route. Graded cathodes were deposited onto yttria-stabilized zirconia YSZ pellets by dip-coating, and electrochemical impedance spectroscopy studies were performed to characterize the symmetrical cell performance. By adapting the slurries, cathode layers with different porosities and thicknesses were obtained. A ceria gadolinium oxide CGO barrier layer was introduced, avoiding insulating La2Zr2O7 phase formation and thus reducing resistance polarization of the cathode. A systematic correlation between microstructure, composition, and electrochemical performance of these cathodes has been performed. An improvement of the electrochemical performance has been demonstrated, and a reduction in the area specific resistance ASR by a factor of 4.5 has been achieved with a compact interlayer of La2NiO4+ between the dense electrolyte and the porous La2NiO4+ cathode layer. The lowest observed ASR of 0.11 cm2 at 800°C was obtained from a symmetrical cell composed of a YSZ electrolyte, a CGO interlayer, an intermediate compact La2NiO4+ layer, a porous La2NiO4+ electrode layer, and a current collection layer of platinum paste

    Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    Full text link
    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the \geq10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of \approx10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics. We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of \approx100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane \approx100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission

    Unbiased bases (Hadamards) for 6-level systems: Four ways from Fourier

    Full text link
    In quantum mechanics some properties are maximally incompatible, such as the position and momentum of a particle or the vertical and horizontal projections of a 2-level spin. Given any definite state of one property the other property is completely random, or unbiased. For N-level systems, the 6-level ones are the smallest for which a tomographically efficient set of N+1 mutually unbiased bases (MUBs) has not been found. To facilitate the search, we numerically extend the classification of unbiased bases, or Hadamards, by incrementally adjusting relative phases in a standard basis. We consider the non-unitarity caused by small adjustments with a second order Taylor expansion, and choose incremental steps within the 4-dimensional nullspace of the curvature. In this way we prescribe a numerical integration of a 4-parameter set of Hadamards of order 6.Comment: 5 pages, 2 figure
    corecore