1,619 research outputs found
Recommended from our members
Viscous control of shallow elastic fracture: Peeling without precursors
We consider peeling of an elastic sheet away from an elastic substrate through propagation of a fluid-filled crack along the interface between the two. The peeling is driven by a bending moment applied to the sheet and is resisted by viscous flow towards the crack tip and by the toughness of any bonding between the sheet and the substrate. Travelling-wave solutions are determined using lubrication theory coupled to the full equations of elasticity and fracture. The propagation speed scales like M^{3}/\unicode[STIX]{x1D707}\bar{E}^{2}d^{5}=Bd\unicode[STIX]{x1D705}^{3}/144\unicode[STIX]{x1D707}, where is the sheetβs thickness, its stiffness, \bar{E}=E/(1-\unicode[STIX]{x1D708}^{2}) its plane-strain modulus, \unicode[STIX]{x1D707} the fluid viscosity, the applied bending moment and \unicode[STIX]{x1D705}=M/B the sheetβs curvature due to bending; and the prefactor depends on the dimensionless toughness. If the toughness is small then there is a region of dry shear failure ahead of the fluid-filled region. The expressions for the propagation speed have been used to derive new similarity solutions for the spread of an axisymmetric fluid-filled blister in a variety of regimes: constant-flux injection resisted by elastohydrodynamics in the tip leads to spread proportional to , and for peeling-by-bending, gravitational spreading and peeling-by-pulling, respectively.EPSR
Enhanced Stability of Iridium Nanocatalysts via Exsolution for the CO<sub>2</sub> Reforming of Methane
\ua9 2023 The Authors. Published by American Chemical Society. The reforming reactions of greenhouse gases require catalysts with high reactivity, coking resistance, and structural stability for efficient and durable use. Among the possible strategies, exsolution has been shown to demonstrate the requirements needed to produce appropriate catalysts for the dry reforming of methane, the conversion of which strongly depends on the choice of active species, its interaction with the support, and the catalyst size and dispersion properties. Here, we exploit the exsolution approach, known to produce stable and highly active nanoparticle-supported catalysts, to develop iridium-nanoparticle-decorated perovskites and apply them as catalysts for the dry reforming of methane. By studying the effect of several parameters, we tune the degree of exsolution, and consequently the catalytic activity, thereby identifying the most efficient sample, 0.5 atomic % Ir-BaTiO3, which showed 82% and 86% conversion of CO2 and CH4, respectively. By comparison with standard impregnated catalysts (e.g., Ir/Al2O3), we benchmark the activity and stability of our exsolved systems. We find almost identical conversion and syngas rates of formation but observe no carbon deposition for the exsolved samples after catalytic testing; such deposition was significant for the traditionally prepared impregnated Ir/Al2O3, with almost 30 mgC/gsample measured, compared to 0 mgC/gsample detected for the exsolved system. These findings highlight the possibility of achieving in a single step the mutual interaction of the parameters enhancing the catalytic efficiency, leading to a promising pathway for the design of catalysts for reforming reactions
Who is the best player ever? A complex network analysis of the history of professional tennis
We consider all matches played by professional tennis players between 1968
and 2010, and, on the basis of this data set, construct a directed and weighted
network of contacts. The resulting graph shows complex features, typical of
many real networked systems studied in literature. We develop a diffusion
algorithm and apply it to the tennis contact network in order to rank
professional players. Jimmy Connors is identified as the best player of the
history of tennis according to our ranking procedure. We perform a complete
analysis by determining the best players on specific playing surfaces as well
as the best ones in each of the years covered by the data set. The results of
our technique are compared to those of two other well established methods. In
general, we observe that our ranking method performs better: it has a higher
predictive power and does not require the arbitrary introduction of external
criteria for the correct assessment of the quality of players. The present work
provides a novel evidence of the utility of tools and methods of network theory
in real applications.Comment: 10 pages, 4 figures, 4 table
Stellar winds from Massive Stars
We review the various techniques through which wind properties of massive
stars - O stars, AB supergiants, Luminous Blue Variables (LBVs), Wolf-Rayet
(WR) stars and cool supergiants - are derived. The wind momentum-luminosity
relation (e.g. Kudritzki et al. 1999) provides a method of predicting mass-loss
rates of O stars and blue supergiants which is superior to previous
parameterizations. Assuming the theoretical sqrt(Z) metallicity dependence,
Magellanic Cloud O star mass-loss rates are typically matched to within a
factor of two for various calibrations. Stellar winds from LBVs are typically
denser and slower than equivalent B supergiants, with exceptional mass-loss
rates during giant eruptions Mdot=10^-3 .. 10^-1 Mo/yr (Drissen et al. 2001).
Recent mass-loss rates for Galactic WR stars indicate a downward revision of
2-4 relative to previous calibrations due to clumping (e.g. Schmutz 1997),
although evidence for a metallicity dependence remains inconclusive (Crowther
2000). Mass-loss properties of luminous (> 10^5 Lo) yellow and red supergiants
from alternative techniques remain highly contradictory. Recent Galactic and
LMC results for RSG reveal a large scatter such that typical mass-loss rates
lie in the range 10^-6 .. 10^-4 Mo/yr, with a few cases exhibiting 10^-3 Mo/yr.Comment: 16 pages, 2 figures, Review paper to appear in Proc `The influence of
binaries on stellar population studies', Brussels, Aug 2000 (D. Vanbeveren
ed.), Kluwe
Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions
Improvements in sequencing technologies and reduced experimental costs have
resulted in a vast number of studies generating high-throughput data. Although
the number of methods to analyze these "omics" data has also increased,
computational complexity and lack of documentation hinder researchers from
analyzing their high-throughput data to its true potential. In this chapter we
detail our data-driven, transkingdom network (TransNet) analysis protocol to
integrate and interrogate multi-omics data. This systems biology approach has
allowed us to successfully identify important causal relationships between
different taxonomic kingdoms (e.g. mammals and microbes) using diverse types of
data
An instability criterion for nonlinear standing waves on nonzero backgrounds
A nonlinear Schr\"odinger equation with repulsive (defocusing) nonlinearity
is considered. As an example, a system with a spatially varying coefficient of
the nonlinear term is studied. The nonlinearity is chosen to be repelling
except on a finite interval. Localized standing wave solutions on a non-zero
background, e.g., dark solitons trapped by the inhomogeneity, are identified
and studied. A novel instability criterion for such states is established
through a topological argument. This allows instability to be determined
quickly in many cases by considering simple geometric properties of the
standing waves as viewed in the composite phase plane. Numerical calculations
accompany the analytical results.Comment: 20 pages, 11 figure
How Society Can Maintain Human-Centric Artificial Intelligence
Although not a goal universally held, maintaining human-centric artificial intelligence is necessary for society's long-term stability. Fortunately, the legal and technological problems of maintaining control are actually fairly well understood and amenable to engineering. The real problem is establishing the social and political will for assigning and maintaining accountability for artifacts when these artefacts are generated or used. In this chapter we review the necessity and tractability of maintaining human control, and the mechanisms by which such control can be achieved. What makes the problem both most interesting and most threatening is that achieving consensus around any human-centred approach requires at least some measure of agreement on broad existential concerns
Interphase chromosome positioning in in vitro porcine cells and ex vivo porcine tissues
Copyright @ 2012 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 85 reproduction in any medium, provided the original author and source are credited. The article was made available through the Brunel University Open Access Publishing Fund.BACKGROUND: In interphase nuclei of a wide range of species chromosomes are organised into their own specific locations termed territories. These chromosome territories are non-randomly positioned in nuclei which is believed to be related to a spatial aspect of regulatory control over gene expression. In this study we have adopted the pig as a model in which to study interphase chromosome positioning and follows on from other studies from our group of using pig cells and tissues to study interphase genome re-positioning during differentiation. The pig is an important model organism both economically and as a closely related species to study human disease models. This is why great efforts have been made to accomplish the full genome sequence in the last decade. RESULTS: This study has positioned most of the porcine chromosomes in in vitro cultured adult and embryonic fibroblasts, early passage stromal derived mesenchymal stem cells and lymphocytes. The study is further expanded to position four chromosomes in ex vivo tissue derived from pig kidney, lung and brain. CONCLUSIONS: It was concluded that porcine chromosomes are also non-randomly positioned within interphase nuclei with few major differences in chromosome position in interphase nuclei between different cell and tissue types. There were also no differences between preferred nuclear location of chromosomes in in vitro cultured cells as compared to cells in tissue sections. Using a number of analyses to ascertain by what criteria porcine chromosomes were positioned in interphase nuclei; we found a correlation with DNA content.This study is partly supported by Sygen International PLC
Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum
Plasmodium falciparum, the causative agent of human malaria, expresses two aminopeptidases, PfM1AAP and PfM17LAP, critical to generating a free amino acid pool used by the intraerythrocytic stage of the parasite for proteins synthesis, growth and development. These exopeptidases are potential targets for the development of a new class of anti-malaria drugs.To define the substrate specificity of recombinant forms of these two malaria aminopeptidases we used a new library consisting of 61 fluorogenic substrates derived both from natural and unnatural amino acids. We obtained a detailed substrate fingerprint for recombinant forms of the enzymes revealing that PfM1AAP exhibits a very broad substrate tolerance, capable of efficiently hydrolyzing neutral and basic amino acids, while PfM17LAP has narrower substrate specificity and preferentially cleaves bulky, hydrophobic amino acids. The substrate library was also exploited to profile the activity of the native aminopeptidases in soluble cell lysates of P. falciparum malaria.This data showed that PfM1AAP and PfM17LAP are responsible for majority of the aminopeptidase activity in these extracts. These studies provide specific substrate and mechanistic information important for understanding the function of these aminopeptidases and could be exploited in the design of new inhibitors to specifically target these for anti-malaria treatment
Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide
BACKGROUND: For β 24 years the AIDS pandemic has claimed β 30 million lives, causing β 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. METHODS: Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. RESULTS: HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. CONCLUSION: These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored
- β¦