192 research outputs found
Innovation in the energy sector: advancing or frustrating climate policy goals?
The energy sector is well known for the relatively modest level of resource that it devotes to research and development (R&D). However, the incremental pace of energy innovation has speeded up in the last decade as measured by public sector R&D budgets, deployment of alternative technologies and novel institutional arrangements. While much of this effort has been targeted at technologies that promise to reduce carbon dioxide (CO2) emissions, there have also been major innovations that extend the fossil fuel resource base and reduce the cost of extraction. The last decade’s developments can be seen in terms of a challenge to the existing energy paradigm in parallel with a renewed innovative response focusing on conventional fuels and technologies. This paper examines this tension, by exploring the expectations of a variety of organisations in both the public and private sector regarding energy sector developments and by analysing private sector expenditure on energy research and development (R&D) and public sector budgets for energy R&D and demonstration (RD&D). Scenarios and outlook exercises that have been published since 2013 reveal a wide range of beliefs about the future development of the energy system. The contrasting views underpinning the different scenarios are reflected in divergent patterns of R&D investment between the private and public sectors. There appears to be a tension between the drive to transform energy systems, on the part of public bodies, mainly motivated by the need to combat global climate change, and private sector activity, which tends to reinforce and extend existing patterns of energy provision. The paper addresses, but not answer definitively, the key question as to whether technological change is enabling or frustrating ambitious carbon goals
The global surge in energy innovation
Policymakers are seeking a transformation of the energy system driven by concerns about climate change, energy security and affordability. At the same time, emerging developments in underpinning science and engineering are opening up new possibilities across the whole technology spectrum covering renewables and other supply side technologies, energy demand and energy infrastructure. This paper reviews both the “policy pull” for energy innovation activities and the “science and technology push”. It explores the expectations of a variety of organisations in both the public and private sector regarding these pressures and possibilities by assessing various scenarios and outlook exercises that have been published since 2013. It reveals a wide range of beliefs about the future development of the energy system. The paper then moves on to analyse private sector expenditure on energy research and development (R&D) and public sector budgets for energy R&D and demonstration (RD&D). This analysis demonstrates significant divergences in patterns of innovation between the private and public sectors and leads to the hypothesis that the private sector is, broadly, taking measures to reinforce the existing energy paradigm while the public sector is focusing on new energy technologies that support wider policy objectives. This pattern is consistent with past technological transitions, with innovation efforts that would transform the energy system being counteracted by countervailing efforts that reinforce the existing fossil fuel-based paradigm
Determining information for inclusion in a decision-support intervention for clinical trial participation : A modified Delphi approach
Peer reviewedPostprin
The type N Karlhede bound is sharp
We present a family of four-dimensional Lorentzian manifolds whose invariant
classification requires the seventh covariant derivative of the curvature
tensor. The spacetimes in questions are null radiation, type N solutions on an
anti-de Sitter background. The large order of the bound is due to the fact that
these spacetimes are properly , i.e., curvature homogeneous of order 2
but non-homogeneous. This means that tetrad components of are constant, and that essential coordinates first appear as
components of . Covariant derivatives of orders 4,5,6 yield one
additional invariant each, and is needed for invariant
classification. Thus, our class proves that the bound of 7 on the order of the
covariant derivative, first established by Karlhede, is sharp. Our finding
corrects an outstanding assertion that invariant classification of
four-dimensional Lorentzian manifolds requires at most .Comment: 7 pages, typos corrected, added citation and acknowledgemen
- …