38 research outputs found
Developing pathways to clarify pathogenicity of unclassified variants in osteogenesis imperfecta genetic analysis
Background
With increased access to genetic testing, variants of uncertain significance (VUS) where pathogenicity is uncertain are being increasingly identified. More than 85% Osteogenesis Imperfecta (OI) patients have pathogenic variants in COL1A1/A2. However, when a VUS is identified, there are no pathways in place for determining significance.
Objective
Define a diagnostic pathway to confirm pathogenicity, providing patients with definitive genetic diagnosis, accurate recurrence risks, and prenatal testing options.
Methods
Functional studies on collagen secretion from cultured patient fibroblasts combined with detailed phenotyping and segregation family studies.
Results
We demonstrate data from a family with a VUS identified in type I collagen.
Family‐1
Six‐year‐old boy with failure‐to‐gain weight, talipes, fractures, on and off treatment with Pamidronate as diagnosis of OI uncertain. Transiliac bone biopsy at 2 years of age demonstrated active new bone formation within periosteum; bone cortices were normal thickness but increased porosity. Trabecular bone showed features of advanced osteoporosis. Genetic testing identified a de novo COL1A1 c.206_208delTGT, p.Leu69del variant. Sibling with similar phenotype but no fractures as yet, tested positive for variant raising concerns regarding her diagnosis, and management.
Results from three independent experiments (cell immunofluorescence, collagen secretion assay by Western Blot, and unbiased proteomics) from cultured patient fibroblasts demonstrate COL1A1 c.206_208delTGT, p.Leu69del variant causing a substantial defect to collagen extracellular matrix assembly confirming variant pathogenicity.
Conclusion
Access to genetic testing in OI is increasing as advances in genetic technologies decreases cost; a clinical diagnostic pathway needs to be implemented for managing variants identified by such testing
Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism
K(ATP) channels regulate insulin secretion from pancreatic beta-cells. Loss- and gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause hyperinsulinism of infancy and neonatal diabetes, respectively. We report two novel mutations in the gating loop of Kir6.2 which cause neonatal diabetes with developmental delay (T293N) and hyperinsulinism (T294M). These mutations increase (T293N) or decrease (T294M) whole-cell K(ATP) currents, accounting for the different clinical phenotypes. The T293N mutation increases the intrinsic channel open probability (Po((0))), thereby indirectly decreasing channel inhibition by ATP and increasing whole-cell currents. T294M channels exhibit a dramatically reduced Po((0)) in the homozygous but not in the pseudo-heterozygous state. Unlike wild-type channels, hetT294M channels were activated by MgADP in the absence but not in the presence of MgATP; however, they are activated by MgGDP in both the absence and presence of MgGTP. These mutations demonstrate the importance of the gating loop of Kir channels in regulating Po((0)) and further suggest that Mg-nucleotide interaction with SUR1 may reduce ATP inhibition at Kir6.2.We thank the Wellcome Trust (076436/Z/05/Z and 081188/A/06/Z), the Royal Society and the European Union (EuroDia, SHM‐CT‐2006‐518513 and EDICT, 201924) for support. FMA is a Royal Society Research Professor. Brittany Zadek was supported by an OXION studentship and Sarah Flanagan by a Sir Graham Wilkins Research Fellowship
Gonadectomy in conditions affecting sex development: a registry-based cohort study
Objectives
To determine trends in clinical practice for individuals with DSD requiring gonadectomy.
Design
Retrospective cohort study.
Methods
Information regarding age at gonadectomy according to diagnosis; reported sex; time of presentation to specialist centre; and location of centre from cases reported to the International DSD Registry and who were over 16 years old in January 2019.
Results
Data regarding gonadectomy were available in 668 (88%) individuals from 44 centres. Of these, 248 (37%) (median age (range) 24 (17, 75) years) were male and 420 (63%) (median age (range) 26 (16, 86) years) were female. Gonadectomy was reported from 36 centres in 351/668 cases (53%). Females were more likely to undergo gonadectomy (n = 311, P < 0.0001). The indication for gonadectomy was reported in 268 (76%). The most common indication was mitigation of tumour risk in 172 (64%). Variations in the practice of gonadectomy were observed; of the 351 cases from 36 centres, 17 (5%) at 9 centres had undergone gonadectomy before their first presentation to the specialist centre. Median age at gonadectomy of cases from high-income countries and low-/middle-income countries (LMIC) was 13.0 years (0.1, 68) years and 16.5 years (1, 28), respectively (P < 0.0001) with the likelihood of long-term retention of gonads being higher in LMIC countries.
Conclusions
The likelihood of gonadectomy depends on the underlying diagnosis, sex of rearing and the geographical setting. Clinical benchmarks, which can be studied across all forms of DSD will allow a better understanding of the variation in the practice of gonadectomy
Impact of intercurrent illness on calcium homeostasis in children with hypoparathyroidism: a case series
Background: Hypoparathyroidism is characterised by hypocalcaemia, and standard management is with an active vitamin D analogue and adequate oral calcium intake (dietary and/or supplements). Little is described in the literature about the impact of intercurrent illnesses on calcium homeostasis in children with hypoparathyroidism.
Methods: We describe three children with hypoparathyroidism in whom intercurrent illnesses led to hypocalcaemia and escalation of treatment with alfacalcidol (1-hydroxycholecalciferol) and calcium supplements.
Results: Three infants managed with standard treatment for hypoparathyroidism (two with homozygous mutations in GCMB2 gene and one with Sanjad-Sakati syndrome) developed symptomatic hypocalcaemia (two infants developed seizures) following respiratory or gastrointestinal illnesses. Substantial increases in alfacalcidol doses (up to three times their pre-illness doses) and calcium supplementation were required to achieve acceptable serum calcium concentrations. However, following resolution of illness, these children developed an increase in serum calcium and hypercalciuria, necessitating rapid reduction to pre-illness dosages of alfacalcidol and oral calcium supplementation.
Conclusion: Intercurrent illness may precipitate symptomatic hypocalcaemia in children with hypoparathyroidism, necessitating increase in dosages of alfacalcidol and calcium supplements. Close monitoring is required on resolution of the intercurrent illness, with timely reduction of dosages of active analogues of vitamin D and calcium supplements to prevent hypercalcaemia, hypercalciuria and nephrocalcinosis