12 research outputs found

    Frontotemporal Dementia: A Clinical Review.

    Get PDF
    Frontotemporal dementias are a clinically, neuroanatomically, and pathologically diverse group of diseases that collectively constitute an important cause of young-onset dementia. Clinically, frontotemporal dementias characteristically strike capacities that define us as individuals, presenting broadly as disorders of social behavior or language. Neurobiologically, these diseases can be regarded as "molecular nexopathies," a paradigm for selective targeting and destruction of brain networks by pathogenic proteins. Mutations in three major genes collectively account for a substantial proportion of behavioral presentations, with far-reaching implications for the lives of families but also potential opportunities for presymptomatic diagnosis and intervention. Predicting molecular pathology from clinical and radiological phenotypes remains challenging; however, certain patterns have been identified, and genetically mediated forms of frontotemporal dementia have spearheaded this enterprise. Here we present a clinical roadmap for diagnosis and assessment of the frontotemporal dementias, motivated by our emerging understanding of the mechanisms by which pathogenic protein effects at the cellular level translate to abnormal neural network physiology and ultimately, complex clinical symptoms. We conclude by outlining principles of management and prospects for disease modification

    Laughter as a paradigm of socio-emotional signal processing in dementia

    Get PDF
    Laughter is a fundamental communicative signal in our relations with other people and is used to convey a diverse repertoire of social and emotional information. It is therefore potentially a useful probe of impaired socio-emotional signal processing in neurodegenerative diseases. Here we investigated the cognitive and affective processing of laughter in forty-seven patients representing all major syndromes of frontotemporal dementia, a disease spectrum characterised by severe socio-emotional dysfunction (twenty-two with behavioural variant frontotemporal dementia, twelve with semantic variant primary progressive aphasia, thirteen with nonfluent-agrammatic variant primary progressive aphasia), in relation to fifteen patients with typical amnestic Alzheimer’s disease and twenty healthy age-matched individuals. We assessed cognitive labelling (identification) and valence rating (affective evaluation) of samples of spontaneous (mirthful and hostile) and volitional (posed) laughter versus two auditory control conditions (a synthetic laughter-like stimulus and spoken numbers). Neuroanatomical associations of laughter processing were assessed using voxel-based morphometry of patients’ brain MR images. While all dementia syndromes were associated with impaired identification of laughter subtypes relative to healthy controls, this was significantly more severe overall in frontotemporal dementia than in Alzheimer’s disease and particularly in the behavioural and semantic variants, which also showed abnormal affective evaluation of laughter. Over the patient cohort, laughter identification accuracy was correlated with measures of daily-life socio-emotional functioning. Certain striking syndromic signatures emerged, including enhanced liking for hostile laughter in behavioural variant frontotemporal dementia, impaired processing of synthetic laughter in the nonfluent-agrammatic variant (consistent with a generic complex auditory perceptual deficit) and enhanced liking for numbers (‘numerophilia’) in the semantic variant. Across the patient cohort, overall laughter identification accuracy correlated with regional grey matter in a core network encompassing inferior frontal and cingulo-insular cortices; and more specific correlates of laughter identification accuracy were delineated in cortical regions mediating affective disambiguation (identification of hostile and posed laughter in orbitofrontal cortex) and authenticity (social intent) decoding (identification of mirthful and posed laughter in anteromedial prefrontal cortex) (all p<0.05 after correction for multiple voxel-wise comparisons over the whole brain). These findings reveal a rich diversity of cognitive and affective laughter phenotypes in canonical dementia syndromes and suggest that laughter is an informative probe of neural mechanisms underpinning socio-emotional dysfunction in neurodegenerative disease

    Altered phobic reactions in frontotemporal dementia: a behavioural and neuroanatomical analysis

    Get PDF
    Introduction: Abnormal behavioural and physiological reactivity to emotional stimuli is a hallmark of frontotemporal dementia (FTD), particularly the behavioural variant (bvFTD). As part of this repertoire, altered phobic responses have been reported in some patients with FTD but are poorly characterised. Methods: We collected data (based on caregiver reports) concerning the prevalence and nature of any behavioural changes related to specific phobias in a cohort of patients representing canonical syndromes of FTD and Alzheimer’s disease (AD), relative to healthy older controls. Neuroanatomical correlates of altered phobic reactivity were assessed using voxel-based morphometry. Results: 46 patients with bvFTD, 20 with semantic variant primary progressive aphasia, 25 with non-fluent variant primary progressive aphasia, 29 with AD and 55 healthy age-matched individuals participated. Changes in specific phobia were significantly more prevalent in the combined FTD cohort (15.4% of cases) and in the bvFTD group (17.4%) compared both to healthy controls (3.6%) and patients with AD (3.5%). Attenuation of phobic reactivity was reported for individuals in all participant groups, however new phobias developed only in the FTD cohort. Altered phobic reactivity was significantly associated with relative preservation of grey matter in left posterior middle temporal gyrus, right temporo-occipital junction and right anterior cingulate gyrus, brain regions previously implicated in contextual decoding, salience processing and reward valuation. Conclusion: Altered phobic reactivity is a relatively common issue in patients with FTD, particularly bvFTD. This novel paradigm of strong fear experience has broad implications: clinically, for diagnosis and patient well-being; and neurobiologically, for our understanding of the pathophysiology of aversive sensory signal processing in FTD and the neural mechanisms of fear more generally

    Decoding expectation and surprise in dementia: the paradigm of music

    Get PDF
    Making predictions about the world and responding appropriately to unexpected events are essential functions of the healthy brain. In neurodegenerative disorders, such as frontotemporal dementia and Alzheimer's disease, impaired processing of 'surprise' may underpin a diverse array of symptoms, particularly abnormalities of social and emotional behaviour, but is challenging to characterize. Here, we addressed this issue using a novel paradigm: music. We studied 62 patients (24 female; aged 53-88) representing major syndromes of frontotemporal dementia (behavioural variant, semantic variant primary progressive aphasia, non-fluent-agrammatic variant primary progressive aphasia) and typical amnestic Alzheimer's disease, in relation to 33 healthy controls (18 female; aged 54-78). Participants heard famous melodies containing no deviants or one of three types of deviant note-acoustic (white-noise burst), syntactic (key-violating pitch change) or semantic (key-preserving pitch change). Using a regression model that took elementary perceptual, executive and musical competence into account, we assessed accuracy detecting melodic deviants and simultaneously recorded pupillary responses and related these to deviant surprise value (information-content) and carrier melody predictability (entropy), calculated using an unsupervised machine learning model of music. Neuroanatomical associations of deviant detection accuracy and coupling of detection to deviant surprise value were assessed using voxel-based morphometry of patients' brain MRI. Whereas Alzheimer's disease was associated with normal deviant detection accuracy, behavioural and semantic variant frontotemporal dementia syndromes were associated with strikingly similar profiles of impaired syntactic and semantic deviant detection accuracy and impaired behavioural and autonomic sensitivity to deviant information-content (all P < 0.05). On the other hand, non-fluent-agrammatic primary progressive aphasia was associated with generalized impairment of deviant discriminability (P < 0.05) due to excessive false-alarms, despite retained behavioural and autonomic sensitivity to deviant information-content and melody predictability. Across the patient cohort, grey matter correlates of acoustic deviant detection accuracy were identified in precuneus, mid and mesial temporal regions; correlates of syntactic deviant detection accuracy and information-content processing, in inferior frontal and anterior temporal cortices, putamen and nucleus accumbens; and a common correlate of musical salience coding in supplementary motor area (all P < 0.05, corrected for multiple comparisons in pre-specified regions of interest). Our findings suggest that major dementias have distinct profiles of sensory 'surprise' processing, as instantiated in music. Music may be a useful and informative paradigm for probing the predictive decoding of complex sensory environments in neurodegenerative proteinopathies, with implications for understanding and measuring the core pathophysiology of these diseases

    The functional neuroanatomy of emotion processing in frontotemporal dementias

    Get PDF
    This is a pre-copyedited, author-produced version of an article accepted for publication in Brain following peer review. The version of record: Charles R Marshall, Christopher J D Hardy, Lucy L Russell et al., The functional neuroanatomy of emotion processing in frontotemporal dementias, Brain, awz204, is available online at: https://doi.org/10.1093/brain/awz204Brain Research TrustAlzheimer’s SocietyLeonard Wolfson Experimental Neurology CentreMedical Research Council UKNIHR UCLH Biomedical Research Centr

    The neurophysiological architecture of semantic dementia: spectral dynamic causal modelling of a neurodegenerative proteinopathy

    No full text
    The selective destruction of large-scale brain networks by pathogenic protein spread is a ubiquitous theme in neurodegenerative disease. Characterising the circuit architecture of these diseases could illuminate both their pathophysiology and the computational architecture of the cognitive processes they target. However, this is challenging using standard neuroimaging techniques. Here we addressed this issue using a novel technique—spectral dynamic causal modelling—that estimates the effective connectivity between brain regions from resting-state fMRI data. We studied patients with semantic dementia—the paradigmatic disorder of the brain system mediating world knowledge—relative to healthy older individuals. We assessed how the effective connectivity of the semantic appraisal network targeted by this disease was modulated by pathogenic protein deposition and by two key phenotypic factors, semantic impairment and behavioural disinhibition. The presence of pathogenic protein in SD weakened the normal inhibitory self-coupling of network hubs in both antero-mesial temporal lobes, with development of an abnormal excitatory fronto-temporal projection in the left cerebral hemisphere. Semantic impairment and social disinhibition were linked to a similar but more extensive profile of abnormally attenuated inhibitory self-coupling within temporal lobe regions and excitatory projections between temporal and inferior frontal regions. Our findings demonstrate that population-level dynamic causal modelling can disclose a core pathophysiological feature of proteinopathic network architecture—attenuation of inhibitory connectivity—and the key elements of distributed neuronal processing that underwrite semantic memory

    Altered phobic responses in frontotemporal dementia

    No full text
    Meeting abstract 053 from Annual Meeting of the Association-of-British-Neurologists (ABN), Edinburgh, SCOTLAND. MAY 21-23, 2019
    corecore