14 research outputs found

    Apport des mesures de l'auto-échauffement sous sollicitations cycliques pour la détermination des propriétés en fatigue polycyclique d'un matériau très inclusionnaire

    Get PDF
    Des essais d'auto-échauffement sous chargement cyclique sur des éprouvettes en fer puddlé ont été mis en uvre afin de déterminer les propriétés en fatigue du matériau. Celui-ci étant hétérogène et fortement inclusionnaire, la notion de VER se pose. Nous montrons qu'il est possible de construire une bonne répartition des inclusions au sein du matériau à partir des mesures d'auto-échauffement sur des éprouvettes de faible volume. Le modèle de répartition est validé sur des éprouvettes plus volumineuses

    Advanced laser-plasma diagnostics for a modular high-repetition-rate plasma electron accelerator

    Get PDF
    We present a laser–plasma electron accelerator module designed to be driven by high-repetition-rate lasers for industrial applications of laser-driven electron beams. It consists of a single vacuum chamber containing all the necessary components for producing, optimizing, and monitoring electron beams generated via laser wakefield acceleration in a gas jet when driven by a suitable laser. The core methods in this paper involve a comprehensive metrological assessment of the driving laser by rigorous temporal laser pulse characterization and contrast measurements, supplemented by detailed spatiotemporal distribution analyses of the laser focus. Results demonstrate the good stability and reproducibility of the laser system, confirming its suitability for advanced scientific and industrial applications. We further demonstrate the functionality of the laser–plasma accelerator module diagnostics, perform target density characterizations, and time-resolved laser–plasma shadowgraphy. Current limitations of the set-up preventing first electron acceleration are analyzed and an outlook for future experiments is given. Our work is a first step towards the wide dissemination of fully integrated laser–plasma accelerator technology

    Propriétés électriques à l'échelle nanométrique des diélectriques dans les structures MIM et MOS

    Get PDF
    Cette étude s'inscrit dans le cadre de la caractérisation électrique par sonde locale de dispositifs Métal-Oxyde-Semiconducteur et Métal-Isolant-Métal. L'enjeu est de comparer les caractéristiques de conduction et de rigidité diélectrique aux échelles nanométrique et macroscopique, dans le but d'évaluer ces caractéristiques sans la réalisation coûteuses de structures intégrées. Un microscope à force atomique en mode de conduction (C-AFM) fonctionnant sous ultravide a été utilisé, et un protocole expérimental couplant des mesures électriques standards de la microélectronique industrielle et les mesures à l'échelle nanométrique a été mis en oeuvre. La méthode a été appliquée aux jonctions Silicium / oxyde de Silicium ainsi que Nitrure de Titane / oxydes d'Hafnium, de Zirconium et silicate d'Hafnium. La comparaison systématique des mesures s'avère fiable si l'on considère une surface de contact entre la pointe et le diélectrique de l'ordre du nm². Il a été démontré que l'ensemble des mesures des tensions de claquage suivait la même loi de probabilité de Weibull, impliquant une densité de défauts responsables du claquage proche de la densité atomique d'un solide. Les champs électriques de claquage mesurés qui sont de deux à trois fois supérieurs aux mesures standards sont alors voisins du champ de claquage intrinsèque de l'oxyde. Le C-AFM a également permis de mettre en évidence un courant après claquage à la caractéristique non ohmique, possédant la propriété d'être quasi-indépendant de l'épaisseur d'oxyde et partiellement réversible. Ce courant inaccessible à l'échelle standard a été interprété à l'aide de deux modèles reposant sur l'hypothèse d'un courant filamentaire en accord avec nos expériences. La topographie après claquage est en accord avec une épitaxie du substrat assistée par claquage (DBIE), due à la densité de courant élevée dans le filament

    Propriétés électriques à l'échelle nanométrique des diélectriques dans les structures MIM et MOS

    No full text
    Cette étude s'inscrit dans le cadre de la caractérisation électrique par sonde locale de dispositifs Métal-Oxyde-Semiconducteur et Métal-Isolant-Métal. L'enjeu est de comparer les caractéristiques de conduction et de rigidité diélectrique aux échelles nanométrique et macroscopique, dans le but d'évaluer ces caractéristiques sans la réalisation coûteuses de structures intégrées. Un microscope à force atomique en mode de conduction (C-AFM) fonctionnant sous ultravide a été utilisé, et un protocole expérimental couplant des mesures électriques standards de la microélectronique industrielle et les mesures à l'échelle nanométrique a été mis en oeuvre. La méthode a été appliquée aux jonctions Silicium / oxyde de Silicium ainsi que Nitrure de Titane / oxydes d'Hafnium, de Zirconium et silicate d'Hafnium. La comparaison systématique des mesures s'avère fiable si l'on considère une surface de contact entre la pointe et le diélectrique de l'ordre du nm². Il a été démontré que l'ensemble des mesures des tensions de claquage suivait la même loi de probabilité de Weibull, impliquant une densité de défauts responsables du claquage proche de la densité atomique d'un solide. Les champs électriques de claquage mesurés qui sont de deux à trois fois supérieurs aux mesures standards sont alors voisins du champ de claquage intrinsèque de l'oxyde. Le C-AFM a également permis de mettre en évidence un courant après claquage à la caractéristique non ohmique, possédant la propriété d'être quasi-indépendant de l'épaisseur d'oxyde et partiellement réversible. Ce courant inaccessible à l'échelle standard a été interprété à l'aide de deux modèles reposant sur l'hypothèse d'un courant filamentaire en accord avec nos expériences. La topographie après claquage est en accord avec une épitaxie du substrat assistée par claquage (DBIE), due à la densité de courant élevée dans le filament

    Propriétés électriques à l'échelle nanométrique des diélectriques dans les structures MIM et MOS

    No full text
    Cette étude s'inscrit dans le cadre de la caractérisation électrique par sonde locale de dispositifs Métal-Oxyde-Semiconducteur et Métal-Isolant-Métal. L'enjeu est de comparer les caractéristiques de conduction et de rigidité diélectrique aux échelles nanométrique et macroscopique, dans le but d'évaluer ces caractéristiques sans la réalisation coûteuses de structures intégrées. Un microscope à force atomique en mode de conduction (C-AFM) fonctionnant sous ultravide a été utilisé, et un protocole expérimental couplant des mesures électriques standards de la microélectronique industrielle et les mesures à l'échelle nanométrique a été mis en oeuvre. La méthode a été appliquée aux jonctions Silicium / oxyde de Silicium ainsi que Nitrure de Titane / oxydes d'Hafnium, de Zirconium et silicate d'Hafnium. La comparaison systématique des mesures s'avère fiable si l'on considère une surface de contact entre la pointe et le diélectrique de l'ordre du nm . Il a été démontré que l'ensemble des mesures des tensions de claquage suivait la même loi de probabilité de Weibull, impliquant une densité de défauts responsables du claquage proche de la densité atomique d'un solide. Les champs électriques de claquage mesurés qui sont de deux à trois fois supérieurs aux mesures standards sont alors voisins du champ de claquage intrinsèque de l'oxyde. Le C-AFM a également permis de mettre en évidence un courant après claquage à la caractéristique non ohmique, possédant la propriété d'être quasi-indépendant de l'épaisseur d'oxyde et partiellement réversible. Ce courant inaccessible à l'échelle standard a été interprété à l'aide de deux modèles reposant sur l'hypothèse d'un courant filamentaire en accord avec nos expériences. La topographie après claquage est en accord avec une épitaxie du substrat assistée par claquage (DBIE), due à la densité de courant élevée dans le filament.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Bayesian Calibration in a multi-output transposition context

    No full text
    Bayesian calibration is an effective approach for ensuring that numerical simulations accurately reflect the behavior of physical systems. However, because numerical models are never perfect, a discrepancy known as model error exists between the model outputs and the observed data, and must be quantified. Conventional methods can not be implemented in transposition situations, such as when a model has multiple outputs but only one is experimentally observed. To account for the model error in this context, we propose augmenting the calibration process by introducing additional input numerical parameters through a hierarchical Bayesian model, which includes hyperparameters for the prior distribution of the calibration variables. Importance sampling estimators are used to avoid increasing computational costs. Performance metrics are introduced to assess the proposed probabilistic model and the accuracy of its predictions. The method is applied on a computer code with three outputs that models the Taylor cylinder impact test. The outputs are considered as the observed variables one at a time, to work with three different transposition situations. The proposed method is compared with other approaches that embed model errors to demonstrate the significance of the hierarchical formulation

    Bayesian Calibration in a multi-output transposition context

    No full text
    Bayesian calibration is an effective approach for ensuring that numerical simulations accurately reflect the behavior of physical systems. However, because numerical models are never perfect, a discrepancy known as model error exists between the model outputs and the observed data, and must be quantified. Conventional methods can not be implemented in transposition situations, such as when a model has multiple outputs but only one is experimentally observed. To account for the model error in this context, we propose augmenting the calibration process by introducing additional input numerical parameters through a hierarchical Bayesian model, which includes hyperparameters for the prior distribution of the calibration variables. Importance sampling estimators are used to avoid increasing computational costs. Performance metrics are introduced to assess the proposed probabilistic model and the accuracy of its predictions. The method is applied on a computer code with three outputs that models the Taylor cylinder impact test. The outputs are considered as the observed variables one at a time, to work with three different transposition situations. The proposed method is compared with other approaches that embed model errors to demonstrate the significance of the hierarchical formulation

    Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combination of genome scan and association mapping

    No full text
    Identifying the molecular bases of adaptation is a key issue in evolutionary biology. Genome scan is an efficient approach for identifying important molecular variation involved in adaptation. Association mapping also offers an opportunity to gain insight into genotype-phenotype relationships. Using these two approaches coupled with environmental data should help to come up with a refined picture of the evolutionary process underlying adaptation. In this study, we first conducted a selection scan analysis on a transcription factor gene family. We focused on the MADS-box gene family, a gene family which plays a crucial role in vegetative and flower development. Twenty-one pearl millet populations were sampled along an environmental gradient in West Africa. We identified one gene, i.e. PgMADS11, using Bayesian analysis to detect selection signatures. Polymorphism at this gene was also associated with flowering time variation in an association mapping framework. Finally, we found that PgMADS11 allele frequencies were closely associated with annual rainfall. Overall, we determined an efficient way to detect functional polymorphisms associated with climate variation in non-model plants by combining genome scan and association mapping. These results should help monitor the impact of recent climatic changes on plant adaptation
    corecore