4 research outputs found

    Electrocatalytic Activity for CO, MeOH, and EtOH Oxidation on the Surface of Pt-Ru Nanoparticles Supported by Metal Oxide

    Get PDF
    This paper describes the electrocatalytic activity for CO, MeOH, and EtOH oxidation on the surface of Pt-Ru nanoparticles supported by metal oxide (Nb-TiO2-H) prepared for use in a fuel cell. To prepare Nb-TiO2-supported Pt-Ru nanoparticles, first, the Nb-TiO2 supports were prepared by sol-gel reaction of titanium tetraisopropoxide with a small amount of the niobium ethoxide in polystyrene (PS) colloids. Second, Pt-Ru nanoparticles were then deposited by chemical reduction of the Pt4+ and Ru3+ ions onto Nb-TiO2 supports (Pt-Ru@Nb-TiO2-CS). Nb element was used to reduce electrical resistance to facilitate electron transport during the electrochemical reactions on a fuel cell electrode. Finally, the Pt-Ru@Nb-TiO2-H catalysts were formed by the removal of core-polystyrene ball from Pt-Ru@TiO2-CS at 500∘C. The successfully prepared Pt-Ru electrocatalysts were confirmed via TEM, XPS, and ICP analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via CO, MeOH, and EtOH oxidation for use in a direct methanol fuel cell (DMFC). As a result, the Pt-Ru@Nb-TiO2-H electrodes showed high electrocatalytic activity for the electrooxidation of CO, MeOH, and EtOH

    Prevalence of sarcopenia and sarcopenic obesity in Korean adults: The Korean Sarcopenic Obesity Study (KSOS)

    Get PDF
    *Context:* Sarcopenic obesity (SO), a combination of excess weight and reduced muscle mass and/or strength, is suggested to be associated with an increased risk of adverse health outcomes. 
*Objectives:* To examine the prevalence and characteristics of Sarcopenic and SO defined by using different indices such as Appendicular Skeletal muscle Mass (ASM)/height^2^ and Skeletal Muscle Index (SMI (%): skeletal muscle mass (kg)/weight (kg) × 100) for Korean adults. 
*Methods:* 591 participants were recruited from the Korean Sarcopenic Obesity Study (KSOS) which is an ongoing prospective observational cohort study. Analysis was conducted in 526 participants (328 women, 198 men) who had complete data on body composition using Dual X-ray absorptiometry and computed tomography. 
*Results:* The prevalence of sarcopenia and SO increases with aging. Using two or more standard deviations (SD) of ASM/height^2^ below reference values from young, healthy adults as a definition of sarcopenia, the prevalence of sarcopenia and SO was 6.3% and 1.3% in men and 4.1% and 1.7% in women over 60 years of age. However, using two or more SD of SMI, the prevalence of sarcopenia and SO was 5.1% and 5.1% respectively in men and 14.2% and 12.5% respectively in women. As defined by SMI, subjects with SO had 3 times the risk of metabolic syndrome (OR = 3.03, 95% confidence interval (CI) = 1.26-7.26) and subjects with non-sarcopenic obesity had approximately 2 times the risk of metabolic syndrome (OR = 1.89, 95% CI = 1.18-3.02) compared with normal subjects. 
*Conclusion:* Obese subjects with relative sarcopenia were associated with a greater likelihood for metabolic syndrome. As Koreans were more obese and aging, the prevalence of SO and its impact on health outcomes are estimated to be rapidly grow. Further research is requested to establish the definition, cause and consequences of SO.
&#xa

    Effects of Vildagliptin or Pioglitazone on Glycemic Variability and Oxidative Stress in Patients with Type 2 Diabetes Inadequately Controlled with Metformin Monotherapy: A 16-Week, Randomised, Open Label, Pilot Study

    No full text
    BackgroundGlycemic variability is associated with the development of diabetic complications through the activation of oxidative stress. This study aimed to evaluate the effects of a dipeptidyl peptidase 4 inhibitor, vildagliptin, or a thiazolidinedione, pioglitazone, on glycemic variability and oxidative stress in patients with type 2 diabetes.MethodsIn this open label, randomised, active-controlled, pilot trial, individuals who were inadequately controlled with metformin monotherapy were assigned to either vildagliptin (50 mg twice daily, n=17) or pioglitazone (15 mg once daily, n=14) treatment groups for 16 weeks. Glycemic variability was assessed by calculating the mean amplitude of glycemic excursions (MAGE), which was obtained from continuous glucose monitoring. Urinary 8-iso prostaglandin F2α, serum oxidised low density lipoprotein, and high-sensitivity C-reactive protein were used as markers of oxidative stress or inflammation.ResultsBoth vildagliptin and pioglitazone significantly reduced glycated hemoglobin and mean plasma glucose levels during the 16-week treatment. Vildagliptin also significantly reduced the MAGE (from 93.8±38.0 to 70.8±19.2 mg/dL, P=0.046), and mean standard deviation of 24 hours glucose (from 38±17.3 to 27.7±6.9, P=0.026); however, pioglitazone did not, although the magnitude of decline was similar in both groups. Markers of oxidative stress or inflammation including urinary 8-iso prostaglandin F2α did not change after treatment in both groups.ConclusionIn this 16-week treatment trial, vildagliptin, but not pioglitazone, reduced glycemic variability in individuals with type 2 diabetes who was inadequately controlled with metformin monotherapy, although a reduction of oxidative stress markers was not observed

    Effects of Vildagliptin or Pioglitazone on Glycemic Variability and Oxidative Stress in Patients with Type 2 Diabetes Inadequately Controlled with Metformin Monotherapy: A 16-Week, Randomised, Open Label, Pilot Study

    No full text
    BackgroundGlycemic variability is associated with the development of diabetic complications through the activation of oxidative stress. This study aimed to evaluate the effects of a dipeptidyl peptidase 4 inhibitor, vildagliptin, or a thiazolidinedione, pioglitazone, on glycemic variability and oxidative stress in patients with type 2 diabetes.MethodsIn this open label, randomised, active-controlled, pilot trial, individuals who were inadequately controlled with metformin monotherapy were assigned to either vildagliptin (50 mg twice daily, n=17) or pioglitazone (15 mg once daily, n=14) treatment groups for 16 weeks. Glycemic variability was assessed by calculating the mean amplitude of glycemic excursions (MAGE), which was obtained from continuous glucose monitoring. Urinary 8-iso prostaglandin F2α, serum oxidised low density lipoprotein, and high-sensitivity C-reactive protein were used as markers of oxidative stress or inflammation.ResultsBoth vildagliptin and pioglitazone significantly reduced glycated hemoglobin and mean plasma glucose levels during the 16-week treatment. Vildagliptin also significantly reduced the MAGE (from 93.8±38.0 to 70.8±19.2 mg/dL, P=0.046), and mean standard deviation of 24 hours glucose (from 38±17.3 to 27.7±6.9, P=0.026); however, pioglitazone did not, although the magnitude of decline was similar in both groups. Markers of oxidative stress or inflammation including urinary 8-iso prostaglandin F2α did not change after treatment in both groups.ConclusionIn this 16-week treatment trial, vildagliptin, but not pioglitazone, reduced glycemic variability in individuals with type 2 diabetes who was inadequately controlled with metformin monotherapy, although a reduction of oxidative stress markers was not observed
    corecore